UsS009124444B2

a2 United States Patent

Ebrom et al.

(10) Patent No.:
(45) Date of Patent:

US 9,124,444 B2
*Sep. 1, 2015

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

METHOD OF FACILITATING SERVICING AN
APPLIANCE

Inventors: Matthew P. Ebrom, Holland, MI (US);
Richard A. McCoy, Stevensville, MI
(US); Andrew D. Whipple, St. Joseph,

MI (US)

Assignee: Whirlpool Corporation, Benton Harbor,
MI (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 344 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 11/933,099

Filed: Oct. 31, 2007

Prior Publication Data

US 2008/0104208 A1 May 1, 2008

Related U.S. Application Data

Continuation-in-part of application
PCT/US2006/022420, filed on Jun. 8, 2006.

Provisional application No. 60/595,148, filed on Jun.
9, 2005.

No.

Int. Cl.
HO4L 1228 (2006.01)
DOG6F 33/02 (2006.01)
(Continued)
U.S. CL
CPC HO4L 12/2825 (2013.01); DO6F 33/02

(2013.01); DOGF 39/005 (2013.01); GO4G 7/02
(2013.01); GOGF 9/54 (2013.01); GOG6F
11/3495 (2013.01); GO6Q 10/06 (2013.01):

(58)

(56)

EP
EP

HO4L 12/282 (2013.01); HO4L 12/2803
(2013.01); HO4L 12/2814 (2013.01); HO4L
12/2818 (2013.01);

(Continued)
Field of Classification Search
CPC HO4L 12/2803; HO4L 12/2814; HO4L
12/2818; HO4L 12/2823; HO4L 12/2825;
HO4L 12/2827; HOAL 12/2832; HOAL 12/282;
HO4L 2012/285
USPCccoves 709/219-221, 203, 213, 216, 230;
714/4, 25, 30; 717/171-177; 700/9, 12,
700/21, 65;702/113, 116, 124, 187-189
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
4,303,990 A 12/1981 Seipp
4,480,307 A 10/1984 Budde et al.
(Continued)
FOREIGN PATENT DOCUMENTS
0802465 10/1997
1016831 Al 7/2000
(Continued)
OTHER PUBLICATIONS

European Search Report for EP08845484.8, dated May 26, 2014.

(Continued)

Primary Examiner — Gregory Todd

&7

ABSTRACT

A method of facilitating servicing an appliance includes
establishing two way communications between an appliance

and

a remote client, and monitoring and communicating to

the remote client operational data associated with the appli-
ance. In this way, the remote client can use the operational
data to service the appliance.

21 Claims, 55 Drawing Sheets

| Software operating layer 1| | RAM & EE|

17
16,22 1,2

16

Software Device
Driver Layer

\ i
h R e BRIy rrrrrery ettt I
s Client or Component Higher Layer Control ig.— E
i g \
: f Control | E
' g w — | Logic :
' | | Application i \II '|J w ® ® ;’:ﬁ‘i J\/_ .
' 1{s 5 :E 1
' £ Dfa u_jead|-O-| il
I I
‘ ; —|fl— API1d = 5] 8 '
D '
E Lower Layer Protocol T API I d=7|2 ;
' i
________)
i . Altsrnatlve')
1 . Logic { 1
I A A SN NPT 4 P)
L Y NN SNNDUNI VDRSO N, _ _____ !

10 14 10 Soflware Plurality of

operating layer 2 Devices

Enable

Development State
network Message

US 9,124,444 B2

Page 2
(51) Int.CL 7,188,002 B2* 3/2007 Chapmanetal. 700/276
7,904,527 B2* 3/2011 Sarma 709/217
DOGE 39/00 (2006.01) 2001/0025392 Al* 10/2001 Youn etal.cccoovreromrreen. 8/159
G04G 7/00 (2006.01) 2002/0043557 Al 4/2002 Mizoguchi et al.
GO6F 9/54 (2006.01) 2002/0073183 Al* 6/2002 Yoonetal.cooe.... 709/220
GOG6F 11/34 (2006.01) 2002/0161552 Al 10/2002 Ryu
G06Q 10/06 (2012.01) 2002;0165950 Al 11;2002 Lee et al.l
2003/0018733 Al 1/2003 Yoon et al.
HO4L 29/06 (2006'01) 2003/0040813 Al 2/2003 Gonzales et al.
HO5B 6/68 (2006.01) 2003/0120972 Al* 6/2003 Matsushima et al. 714/25
A47L 15/00 (2006.01) 2003/0177268 Al 9/2003 Youn et al.
HOAL 29/08 (2006.01) 2004/0031038 Al 2/2004 Hugly et al.
(52) US.ClL 20040172587 AL 52004 Lowd
awlor
CPC ... HO4L 12/2823 (2013.01); HO4L 12/2827 2004/0260407 Al 12/2004 Wimsatt
(2013.01); HO4L 12/2832 (2013.01); HO4L 2005/0011886 Al 1/2005 Kim
63/105 (2013.01); HOSB 6/688 (2013.01); A47L 2005/0013310 AL 1/2005 Banker et al.
15/0063 (2013.01); HO4L 12/2807 (2013.01); %882;8%5% 2} %882 iﬁgﬁ? "
HO4L 67/12 (2013.01); HO4L 69/26 (2013.01); 5005/0143129 Al 6/2005 Funk of al.
HO041L 2012/285 (2013.01); Y02B 40/143 2005/0162273 AL* 7/2005 Yoon etal. .ooovece... 340/539.14
(2013.01); YO2B 60/165 (2013.01) 2005/0251604 Al 11/2005 Gerig
2005/0258961 Al 11/2005 Kimball et al.
(56) References Cited 2006/0009861 Al 1/2006 Bonasia et al.
2006/0015299 Al 1/2006 McDermott et al.
2006/0092861 Al 5/2006 Corday et al.
U.S. PATENT DOCUMENTS 2006/0120302 Al 6/2006 Poncini et al.
2006/0123124 Al 6/2006 Weisman et al.
‘S‘i?ggg; i gf}ggg g‘;flviesetal' 2006/0123125 Al 6/2006 Weisman et al.
$321279 A §/1994 Holling et al 2006/0168159 Al 7/2006 Weisman et al.
2317620 A /1996 Tvenoffof ol 2006/0168269 Al 7/2006 Sather et al.
2754048 A /1998 Hookstrs of al 2006/0184661 Al /2006 Weisman et al.
2875430 A * /1995 Kocther : 705/15 2006/0190266 Al 8/2006 Tanigawa et al.
10512 A 272000 Muller et ol 2007/0129812 Al 6/2007 Ferchau
12159 A 9/2000 Mansbery ef al 2007/0129813 Al 6/2007 Ferchau
6148349 A 112000 Chowetdd 2007/0160022 Al 7/2007 McCoy et al.
6205272 Bl 9/2001 Feldmsn et al 2007/0240173 Al 10/2007 McCoy et al.
6,426,947 Bl 7/2002 Banker et al.
6,502,411 B2* 1/2003 OKAmoto ...cocvevvvrevrveenn. 62/129 FOREIGN PATENT DOCUMENTS
6,622,925 B2 9/2003 Carner et al.
6,681,248 Bl 1/2004 Sears et al. EP 1028604 A2 8/2000
6,711,632 Bl 3/2004 Chow et al. EP 1133188 A2 9/2001
6,772,096 B2* 82004 Murakami etal. 702/184 EP 1351447 Al 10/2003
6,847,614 B2 1/2005 Banker et al. P 2004 096591 A 3/2004
6,883,065 Bl 4/2005 Pittelkow et al. WO 03/031876 Al 4/2003
6,996,115 Bl 2/2006 Budde et al. WO 2005/046166 Al 5/2005
6,996,741 Bl 2/2006 Pittelkow et al. WO 2005109135 Al 11/2005
7,003,688 Bl 2/2006 Pittelkow et al. WO 2006014504 A2 2/2006
7,043,663 Bl 5/2006 Pittelkow et al. woO 2006135726 A2 12/2006
7,069,468 Bl 6/2006 Olson et al. WO 2006135758 Al 12/2006
7,090,141 B2* 8/2006 Rohetal. ..cccoovrrvomnneenn. 236/51
7,117,051 B2 10/2006 Landry et al. OTHER PUBLICATIONS
7,127,633 Bl 10/2006 Olson et al.
7,134,011 B2 11/2006 Fung European Search Report for EP08844798.2, dated May 26, 2014.
7,136,927 B2 11/2006 Traversat et al. European Search Report for EP08843374.3, dated May 27, 2014.
7,165,107 B2 1/2007 Pouyoul et al.
7,171,475 B2 1/2007 Weisman et al. * cited by examiner

US 9,124,444 B2

Sheet 1 of 55

Sep. 1, 2015

U.S. Patent

< A y
. A ot O
| mmo sapsouelq
Loy :

jolluon gl

wiogeld |S vvv ~= ____
-4 _H_ o 3se) Aiojoed

02 e ____
%H wm&_w.:.zr _ _:_EES_EEE.___E__:E_::_E::_EEEEE_E:_EE_
] || o Ay \ D

vs (44
o L m J\ﬂ__s == =
oL 0z B = o=
u:mEno_m.\.,mm.: = E=3
s|04Ju0d = 2on

/

[44

U.S. Patent Sep. 1, 2015 Sheet 2 of 55 US 9,124,444 B2

..

User Interface -4

Energy Diag

¥ & iii-16B
Energy | Diag |: i i {| Energy | Diag F1T

US 9,124,444 B2

Sheet 3 of 55

Sep. 1, 2015

U.S. Patent

33 ? AVY abessapy aomjau
6l aje1s Juawdojanaqg
/ 3jqeu3
S$991A3(Q Z 19Ae| Bunesado
10 Ajeanid ma;:om \\S bl ot
1| oo
' " aAneUId}Y !
o - u -
H
1K
i =|4= E Idv] « j000301d 19/e 19MO
1k .m S = PIIdV u_@]
g 4 2
| TEEES) 1 3
1O |5 g2 vl 33
I : M--’ a > <
Y= 332 |® ® M 1 |1 s |uoneanddy
1k Z] 2Be1 | = M m_
i [o3uo)
' [}
| 3¢ \ J
1 H . .M f |osuo) 13he 1aybiH Ew:on::w.v 193ustio
ol 2L zZ'ol
Ll
J9AeT JaAuQ L
321A3(3JeMyos 339 NV | [1 19Ae] Bunjesado asemyog

US 9,124,444 B2

Sheet 4 of 55

Sep. 1, 2015

U.S. Patent

8¢
A
vee
A N
(1e-1) (g5z-1)
apond w bes
ejeq peojfed poddo q4/pwd 4 dNIN al dv
¥-oug sug LRIE Lng
G1 aig € aAg Z a1Ag | ?Ag
abessay piepuels |eaAdy - Jun ejeq 32IAI3S
.l) 9z et
~ee 4 -
oy sug = aIg
3)Aq | alAq (€0 | v =
. . aihg | --- | z a3k ok £ 31g =)seog
mo | -ybiy | N3Aa et L) sng | sua [zo'sng= 1seq a3xo
11190-910uD ejep peojAed N31| dvS jy|s |8 |a 9JAg JpH
[SfeE] (NAs) lun ejeq 3dlAIag ail SS3IppyVY Japeay
N\ Y »)
ve

US 9,124,444 B2

Sheet 5 of 55

Sep. 1, 2015

U.S. Patent

SJUaAg papo) pieH

Juanz ysiiqnd

y

0|

Hu| ova suiBu3 DY

JUIAT 3jeaId

SJUdA] puds

JuaAgz ysiiqnd

[

SJUaA3 puas

[y

JUBAT 3jeaud

}u| dva

S9|qeLeA [|od PapoD pieH

a|qelieA jjod ystgnd

Y

Vs

3lqeueA |jod peal

Jualo

7

ce9l

US 9,124,444 B2

Sheet 6 of 55

Sep. 1, 2015

U.S. Patent

Vs "bBi4

cl

anJy =(1)pi(g)

4

(eyep’L=p1)yoremias(z)

-

*yoje| Jo0p ayj asejdal o}
12Wolsnm ayj} yjim awiij e
a|npayos pue paltapio ued
9yj 196 s}97 "uew 321AI9S
e Buipuas jJnoy}im ainjie;
ayj jo sisoubelp e aAey
e

aM MON ‘sl)i a1ay L (p)

‘s9|qelieA

18213113 3y} Joj Yyojem,,
e dn jas sja1 "bBuiyiom jou
SJJey} UsAQ ue yjim ul jjed
Jawo)snd e pey isnf apa(L)

- _/

U.S. Patent Sep. 1, 2015 Sheet 7 of 55 US 9,124,444 B2

16,22 10

Client SA

find SA Nodes

publish SA Nodes

get SA APIs

publish SA APls

get API Info

publish API Info

get Instance Info

\ 4

publish Instance Info

A

US 9,124,444 B2

Sheet 8 of 55

Sep. 1, 2015

U.S. Patent

Ve

8p0HI0IIJOAU
ybno.iys payiodals
aJe saje)s jne4

ajels
J3yjo Aue jdnuajul

it 83e3s j)ney oy

USeMm - Sanyijuod a|aAo

(47

U.S. Patent Sep. 1, 2015 Sheet 9 of 55 US 9,124,444 B2

38
38 \ ~
\ Reset
Command
Received

36

POWER_UP
38 -

First pass of setting
nvo’'s complete

38,40
36
38 Invalid
Command
Received
Invalid

Command
Received

vatia — 38
Command Command 38
Processing Received \
Complete or 36 .
Timeout Valid
Command
Received

38,40
40 J
~~Command "/
Processing
Complete or go r_naréd
Timeout eceive

Command
Received

US 9,124,444 B2

Sheet 10 of 55

Sep. 1, 2015

U.S. Patent

W [l
g2 |["NO = J010W ad 0=dIWIN
23 | 440 = dwnd a4 1=dAIN
*a T JLVLIOV = Jevseq a4 L=dININ i
1 1
g |[aN3 + Wnia3W = simersduis] g3 0=dWiN
5L NO = duing a4 1=dWN
g ([TId = 19%seq 84 1=dWIN
c |[SNINNNY = 93eIS 64 [=dAW
2| HSVM = 919A0 a4 I=dWIN
3 MOV 84 L=diNW so18pEa bigeus
puew 920.1d
H HElS QD 0=dININ
2 [l
S || MOV 94 0=dWW
a purWWIOy [Si59204d
o H IWNIG3IW = sinjeiedwal AND F=dWIN
=)
w <
3 MOV 94 0=dWW
3 puewiuIG aosold

USEM = 3]9A3 AND L=dINI

l/
oo P o010y

9l

0l ‘b1
Vi zZ'9l (4]
AN \ |

US 9,124,444 B2

Sheet 11 of 55

Sep. 1, 2015

suojes)ddy
sl oL

Jayng JAN Ui spuewwod Buiwooul sa10)s-
indino OAN 4o} sbey syepdn sassasoig-

|053u03 Moy pue Buipunog IAN/OAN sabeuepy-

JOJ]UOD MO} pue JusWwaBps|mouyoe PUBLLWOD
psjesawnus 1o} sjqeleA snjejgadiosy Sjog-

aoueydde ai) Ul SpUBWILLOD pljeA S3JND9X]-
JQIM 03 29eHalUl JoAe| uoleaydde sapiacid- 2dIM SPUBLILLIOD OJuI SO|qELIEA [AN SOS.Eg-
JIAVT1 NOLLVIINNININOD ¥ITANVH ANVININOD
/ A
sojepdn / ¥ \ puewwo?)
OAN 13ke IAN

A 4

uoneslddy 3QIM| ~

7y

./

AITANVYH AITANVH
-1 3lvddn ONVINNOD [

w.v \ 4 A
7 o

sajepdn QAN {0} JaAe] "wwoo sbe|4- 1sbeuep |n
sajqeueA 3oeqpaa) OAN buisn snjels
aoue||dde jo sjoysdeus a39)dwoa sping-

AFTANVH J1lvadn

/

/

ute

U.S. Patent

VIl

U.S. Patent

11

Sep. 1, 2015 Sheet 12 of 55 US 9,124,444 B2
MAIN LOOP
A
Appliance Specific
Code
A
SLOT 1:
SA_ProcessincomingMessage()
Run one slot

function each
loop literation

SLOT 2:

SA_ProcessOutgoingEvents()

SLOT N:

4

y

SA_WideComm()

y

4

WIDEExec()

y

Appliance Specific
Code / Noise
Immunity

Appliance Specific ...

Fig. 11

U.S. Patent Sep. 1, 2015

Fig. 12

Fig. 13

Sheet 13 of 55

WIDE
Callbacks

SA_AcceptData()
(wide callback)

SA_BuildData()
(wide callback)

Initializer

Gower On/ Rese>

Appliance Specific
Initialization

A

SA_Init()
Initialize wide_comm &
update/command handler

!

InitWIDE()
Initialize WIDE

US 9,124,444 B2

US 9,124,444 B2

Sheet 14 of 55

Sep. 1, 2015

U.S. Patent

[220] UOIIEDINOU JUBAS :
8]0 UOIEIIIOU JUBAS :
2]0Wal 18U)S]| JUBAS :
[€20] J3U3)SI| JUIAD :

jEO0] PUBWILLIOD :

2)OWal PUBLULIOD :

(9)
(s)
)
(e)
(@
(1)

‘sS8IX0ld se 21607 ddy 0} S|dYy sesodxa A1aaoosip sajeiiul : AiysiBay |dY

L B4

SINQD aInpnisesyu|

BSINJONISEIjU]

sWao uoneoyddy «

Wao | Na9 | INa9 | NaO

s|dv |eaAdy - |8 IdV | L IdV |9 IdV (S IdY

="

¢B 10 egZ 10 g2

wm/ ~ 8/ ~
SIWaO BININNSelju SWGO BaNonijselu
o€ NGO | NaS | NaD | Na9 08 0% AMVH WAas | N9 | WD | NdD
4 -
N Ovavs
Ovavs| Igiav[Z1av]9ldv|sidv 7 |[Fiav[eiav|ziav]1iav
-9 ﬁu 1 % A.VV N Av% A: *
' Pova wﬂ”_ > ova Nt ¢
(o) W[[eav 1 , 81dv ()
| B8 L1V 3 (9) 4 121av () §
v 3 1 1
21607 g [91av] | . , L [91av 3
v vidv| STSTT) s |3 |viav ddy/
0 Eldv| M M | |Eldv g N
Wi \ziav] & Y [zavid-@
Ufviav A 0 _ Y [Viav]J |
[T Y —— AT T
VL vrl ri veror \~_ V4
91 E\ 2 O 2 ou vol

08

08

65

US 9,124,444 B2

Sheet 15 of 55

Sep. 1, 2015

U.S. Patent

GlL "bi4

Jsoidwy e ¥]
AN /
[
. - - -| SSBRIM
" ZEZSY
]
)
Bojeuy 14° :
lenbia / " |
— m 14"
nood '
zeTsy _
3aIM 2am [| Lo-{sserm \V ZeZSy
" PANAYY 3aIm
2oud)sISId YANATY X
aam CLIETTTY Ol e fonuon
_ 3aIM \
joured asuelddy i
\ 0z 4}

U.S. Patent Sep. 1, 2015 Sheet 16 of 55 US 9,124,444 B2

56
/ 12
Key \ /
Presses
58
State Machine /
Translate Appliance
Functionalit
1 1 Custom Software / y
Duplicates
External /2' State Machine
Commands \
\ 62
60
Fig. 16 (PRIOR ART)
56
/ /10
Key -
Presses >
S - Appliance
I v Functionalit_y +
External . State Machine
Commands \
\ 58/12
60

US 9,124,444 B2

Sheet 17 of 55

Sep. 1, 2015

U.S. Patent

coz

gl ‘B4

<t
(=
N

] ¥4

[4 %4

e

uepy

)

ue

\

vic
1]1 74

\

[A

80¢

\

\

90¢

L+

In
|es07

pieog
lojenjoy
-10SUag

8ic

oLe

U.S. Patent Sep. 1, 2015 Sheet 18 of 55 US 9,124,444 B2

218

Fig. 19

U.S. Patent Sep. 1, 2015 Sheet 19 of 55 US 9,124,444 B2

Fig. 20

US 9,124,444 B2

Sheet 20 of 55

Sep. 1, 2015

U.S. Patent

N_‘\

jiomieN
|eusajul

/

90¢

12 b4

(AN A

-~
el
.....

vee

uol23aUU0)
Jouldju|

U.S. Patent Sep. 1, 2015 Sheet 21 of 55 US 9,124,444 B2

238

J9ALIQ YIOM)ON
jeuiajuj
I 3

232

\

Y

Jaaug
vS

\
240

242
238

Service
Logic
!

Fig. 21A

Flash Memory

232

m

7]

-]
236

=D
g1
B
236

Computer<«—»

US 9,124,444 B2

Sheet 22 of 55

Sep. 1, 2015

U.S. Patent

Nv\

IdVv

II__:|_-!

NIOM]ON

7
90¢

zz b4

[ANA

jeusajuy|w

e

N

vve

©
© [

uoI1}93Uu0 JauUJaju|
aul auoydaja)

Sheet 23 of 55

U.S. Patent Sep. 1, 2015

238

]
Q
o
S
S
Q.
<
[BBE |
|
JoAL(YIOM}ON
|EUJQJU|
A

232

;

Y

Jaauq
vS

\
240

242
/

238

Service
Logic
i
Flash Memory

JaALQ
EITTEST]

250
/

O
§n
248

Phone
Line

232

248

US 9,124,444 B2

Fig. 22A

US 9,124,444 B2

Sheet 24 of 55

Sep. 1, 2015

U.S. Patent

¢z ‘b4

vse

1414 14°T4
A 4 /

_{\— \ 13Yjeapp IO sbuijjag iild painsesy b1
WG| | 402 »on
EoEE
1 406G ubH

Auung Aped VD

=l Al B

Jayjeap s, Aepoj \ awj ‘ajeq
/& 7 7
r48
¢se 96¢

US 9,124,444 B2

Sheet 25 of 55

Sep. 1, 2015

U.S. Patent

vz "Bi4

8¢
A
v8e
A
(2-0) {€-0) {1=) .
eleq peojkeq aid aiw ddw beiy dNW Am_wm%
z-0ugd £ ng sug oug g
Sl 91Ag ¢ 91ig Z 91Ag I @)4g

abessa|y piepuejs S - Jiuf ejeq 921A195

U.S. Patent

Sep. 1, 2015

Cmd OpCode

IFb
1 Cmd OpCode
1 1 0 0
1 1 0 1
1 1 0 2
1 0 0 3
1 Fb OpCode
1 1 1 0
1 1 1 1
1 0 1 2
0 | Fb | OpCode
1 Cmd OpCode
1 0 2 0
1 Cmd OpCode
1 1 3 0
1 0 3 1
0 Cmd OpCode
1 Fb OpCode
1 1 0 0
1 0 0 1

Sheet 26 of 55 US 9,124,444 B2

- Fragmented Message Bit Definition

- Standard Message Bit Definition

- First fragment contains OpCode and Cmd/Fb bit

- Second fragment begins MID and FID counters

- Only the FID counter increments inside the message
- FID increments again to ensure no fragments are lost
- MFP = 0 indicates fragmentation is complete

- Next fragmented message begins with OpCode

- Now the MID increments for this new message group
- FID counter incremented

- Fragmented message complete

- A standard feedback message is sent here so Frag =0

- Next fragmented message begins with Frag = 1
- The FID always starts at 0 and counts up to 7

- Next fragmented message begins
- The maximum value for the MID is 3
- Message complete

- A standard message is sent. This is a command
message

- Next fragmented message begins
- The MID rolis over from 3 to O for this message group
- MFP = 0 - message complete

Fig. 25

U.S. Patent Sep. 1, 2015 Sheet 27 of 55 US 9,124,444 B2

16A 16
16 \ /
\ \
Board. |l Create Event (Address, API, OpCode) Variable Map
U (Name, Address)
PC

PC Variable Map Events - Lookup Name - Same Address, Apild & OpCode

Fig. 26A

16 16A 16

Variable Map . Create Remote Event (API, OpCode) PC
(API, OpCode,
Address)
_ Create Remote Event (API, OpCode) Board
Board,) 2
16

Fig. 26B

US 9,124,444 B2

Sheet 28 of 55

Sep. 1, 2015

U.S. Patent

ssalppy
a|qeueA

199 L

A 4

(ZA=9p02d0O‘ZX = IdV
‘SSIPPY] qelieA)IUdAZsIeald 18

(ssalppy ajqeeq
‘A=2p00d0‘X=IdV)eieqiepajowayysiiqnd :9

>

{A=9p0ondO‘X=IdV)ereqieAslowayajeald g

- e e e - e e = e e = = = = = = — e

].___

(A=2p02d 0 'X=1dV)IUdAJ3j0iay3}eald ¢

US 9,124,444 B2

Sheet 29 of 55

Sep. 1, 2015

U.S. Patent

-apow
UOIJEIYIJOU JUIAD
|eusa)xo ay) 319s
Ajuo ues juayd ay

*Sapous UolEIYIIou
JUBAS |euldj}xa

pue [eusdjul yjoq jas
ues uonesydde ayy

<
= - - ot

(apoodQ'1dV' 440/NO)epON|EUIaIXT}oS 19

gz "bi4

s

1]

JuaAz Juajis g
|

[440 = euiayx3
440 = |ewsdyu|]

Y

[NO = jeusaixg
440 = jeusdzup]

y

I 3

UOIIEIRNON JUBAT 1}

UONEOHIION JUBAT :Z

P

[NO = Jewsaixg
NO = fewsajuj]

je

urepy

VS
usiio

U.S. Patent Sep. 1, 2015 Sheet 30 of 55 US 9,124,444 B2

sd ACK_Events)

Application/ SA UpdateHandler
Client

1: Add unacknlowdedged event

]
1
l_:_l 2: Registerin NVO[]
: Ly
. 1
! \ 3: Unacknowledged
! Event
: Occurs
: 4: SetupdateFlag()

]
]
]
]
L
1
1
I
t
1
]
]
5: Send Event :L:J
]
]
]
]
]
]
]
]
I

6. Add acknowledged event

> 7: Register in NVO[] _

8: Acknowledged X
Event 1
Occurs 1

1

:

loop | ! :
]

[No ACK && (Retry_Cnt < MAX_RETRIES)]
]

9: SetUpdateFlag() !
10: Send Ack’d Event,

]
]
: - Retry_Cnt++
. !
) |
' [}
opt | X !
[Event Received] 1
1 11: ACK 1

US 9,124,444 B2

Sheet 31 of 55

Sep. 1, 2015

U.S. Patent

noauwli] J10j)Jo3YyH
¥ J9WlL] Ju3WBIdU|

0¢

‘B4

-

.

|5

Spuewwo) |1y / oL

(a30way) pajueln ssasoy Aiesodwa) L
[

/ puodss
pajdaosoy
pajdasoy plomssed
pilomssed uQ-dway
uQ-dwa] Jo jnoaswi)
™
A 4

pajleq piomssed

®

)
ﬁ SpuBWWO) ||V / OP

P

C_moo.c pajuel SSaddY

%

paydaosoy
plomssed
jusauewlad

llemall4 apisjnQ spuewwo?) / ob

.

(sj0way) paiuag ssady

\—|

A

pajle4 piomssed

9POIN jlemadl4 Juauewsad

U.S. Patent Sep. 1, 2015 Sheet 32 of 55 US 9,124,444 B2

16 16,22

/

SA Node SA Client

1: Firewalled Command

2: NAK

d

3: publishSANode w/ Incorrect Password

<

| !
|]
| |
[|
I |
] |
4: Firewalled Command
5: NAK N
| |
| |
| |
| [

7: publishSANode w/ Correct Password

ad

8: Firewalled Command

-

9: ACK

v

Fig. 31

US 9,124,444 B2

Sheet 33 of 55

Sep. 1, 2015

U.S. Patent

[——
oL _ (A%
\ t
\ ;
\i4: \ !
/ Fr—— e T —_———
_]
..... Lo '
apIMm . -“.] Vs - ayadsddyvs
— o o |
v) 4
()eiqeuEAlIOdYSIGNd + (Jeregiepalowayysiang +
(Jaiqeiepjjodpeay + (JereqgLepsijowayian+
()luengsjowsyouswinNalesID+
3|qEHEAIIOdVS (1uangzajowayaligaleaid+
AAQ.OMtqu_VV OEOCOuC®>W_N—tOwC_r_w__DDn_.v S|dY OEOOQW
: (Jyouoeazjeussjuas+ Uoneoyddy
(JyouOiuangeusalx3ysiqnd+ spuawaduw|
(J4ouojusagBUIRIXTIOS+
| Y (1esayysysiiqnd+
(uaAgysiang+ (Ovsiesay+
(Jojujpouejsulysiigng+ ()siengpuag+ (Jpauses|siusagustignd+ y
(Joyujeouelsu|po+ (Oereawoydaauysiand+ (ereQuuangieo+
(ouiidwysiand+ (JWO¥dI3PEaY+ (Jerequangaiigysiignd+| | OWOUdIIOM+
(Jopunidvien+ (JeleqAiowsNysigng+ (JerequengouswnNusigng+| | (OAowspam+
(sidvvaysiand+ (Aowspypeay+ (oidvieo+
()sidvvSien+ (JpousdiesqueapHias+ (Jsiuangieq)n+] | Asowsppodys
(JepoNvsusiiand+ (esqiesysiand+ (husazarigeressD+ <<BIBHBIUI>>
()sopoNvySPpul4+| [(Huswabpamouyoyysiignd+ (husAJouswiNNalea1D+
KianodsIQvs 310QVYS ovavs Idvauioadsuoneayddy

ule

<<9oBUAUI>>

<<d2BpAI>>

<<90BHIJUI>>

<<JeLIBU>

US 9,124,444 B2

Sheet 34 of 55

Sep. 1, 2015

U.S. Patent

e¢ “Big

(eregysasied+
(Jpeoifedninnpec+

Ippyeseg-
ispuleway-
(Bess)om)a1hg-
aels beid-

J1assedabessapy

A 4

[l OAN wouy ejeq
BuiobinQ seasuey

()s1awij sjpueH+

- ~ —p
1

sabessapy
peojied-nin

i} 1
(remainiiosyo+
(eiegping_vs+

(eleqidasoy ys+
(wwodapimAYIU+

104 ()BsyyanpD
sjeD AjpAnesay|

91e)S ™ WO
sBej4 wwon-

13[PURHWIWON3PIM

A

ainonas AN Ul ejeq Buiwoou) ssiolg 1

4

()abessapy|euia}x3puag S+
()puBwiwoD|eusdu|puas” vS+

Jaunoy” qH- T 7 Tsiewny puewwos | (JspopiuanTiegIANSSac0.d+
noawny, sy \ T T _ ()WS195941ANSS920.d+
Jsjuno) Immi- | }oBgpsdag pueuituo ()eyeqgiepe)owa}anIANSSao0Id+
J8|unoy 299G+ ! 1o sejlepdn sjag ()1uaA39)0WayBIRBINIANSSIV0Id+
Japunoy IN- " ()ojujaoueisupanANSSao0Id+
sBej4 " awiy - X ()sOAN1asaY+ ()o4u|IdVISDIANSS90Id+
FETICYETT | (JoANa1epdn+ ()S1dVVSIZDIANSSa90Id +
Y . (weAgppy vS+ ()SOPONVSPUIJ|ANSS320Id+
_ [e e
re- anjepabueyo- | HIANSS800.d+
" X 101e19d0BBUBYD- (noud3FhoWaNPEaYIANSS00I + %wﬁwﬂm_ﬁoﬁwﬂﬂm%%w
) X apopdo- ()SIU2ATPUSGIANSSBI0.IE + aoueyddy spiemio
] . ande-le - — - - ()siuaazueaDinANSsad0Id+ . _ _ _ _ _ _ _
' sowny 1 == = az1s-| SAonisaq ()1eagquesHIANSSe00.d+ [
' orepd isejepdn ssaippe-| ® S9jea10 (Yuarcosigiuy+ !
1 oepdn § (Jovauul+ !
(uoneoynonjewsaupes~ VS + .:o_,mo>z (JOANB@AISINOBYBIPURH+ “
coﬂ\w%uwumva:“om_m? e — — 1 ()eyo|dwonabessapybuiooul+ X
Uipuadsalepdn+| ‘siajsibay § OAN XYW "0 '
(Betdeiepdnseaios ! [Teoueisu jsuoo- v
()5ei40)epdnies+ %aoewzo_smig_:: (jod m vS?
=, owIBNJILLe 953
omwauno-| 0 Hsigvisuont | OnOuaaheotOnaminGs
1BA_OAN- (Yowapoweukgieo+ olelS abessaly- ()a1qBLBAlICdOANPING +
SIdy 8100- W9 a0 y ing
sbej4 QAN Panosay- xspu|_deap wmﬂﬂﬂtxﬂ@ﬂh- C:ozwwmc%momﬂ“w m>w_mm5ww:_o_vcm:+
- - ajpue
[16eig " s1epdn™AN- 9213~ deay- JepTuenD- Cucmssn_“,u_w_mc_ﬁoo&m““:mnﬂ
[JoAN- [Jdeap- FBATIAN- (Joyroadgddyyul+
J3|pueyajepdn desjliowapoiweulqg 13|puBHpURWWOY) Jajpueypuewwo) sj10adgddy

|

1 QEleqidecoy”vs
y ®()=1ea@pINg VS
U0 oeg sjjed

-

PIM

(Joexzapim siled

(Juwwodapim_vs+
{)sjuaagbulobinOssaooid vS+

[*~)Bspyarand sies (uioSepiia e | ()Bessapbuiuoouissacoid vS+

Onu"vs+

()puewwonbulwosujajpue
w()obesssoegpasaljpueH
ybnoiy) sjuswaidw)

Y

- — - —

slied

sjdy dy1oadg asueyddy

\ ubisaq ssejp vs

US 9,124,444 B2

Sheet 35 of 55

Sep. 1, 2015

U.S. Patent

pg "B14

s,y-uopzesyddy s-oydedgddyys
o I
_WAAEmcanoovv P wAAEmcanoovv
! L
! 1
|)
y y
. y'depyajqeneAys yuud vs y-ayoadgddyvs
fmmmm—— .
1 _WAAEmcanoovv _WAAEwcanoovv _WAAcmcanoovv
]
' 7 Y 7y
]]]
X avadg uonedyddy vs | X
" " L
1] L il A -
U [F VP U U R - 1
]]]]) 1]
1 T L] 1 ¥ 1 T
1 1)] I 1 1]
o'beqvs o'A1an0asIQyS O"WWODIPIMYS 9'3109)VYS
_IWWAAEocanoovv @AAEm:anoovv _WAAEm:anoovv @AAucwconEoovv
1 1 T 1
1 1 1]
1] T]
Y y A 4 _ Y
ybeqgvs yAianoosiqvs Y 'WwwodapIMYS Yyaiogvs
@AAu:m:anoovv @Aﬁcmcoa&oovv @AAE@:QQESVV @AAE@:QQESVV

_ L

|

2109 VS

L

\:o_ﬁan_:mmho apg

US 9,124,444 B2

Sheet 36 of 55

Sep. 1, 2015

U.S. Patent

Gg "B

(LNOZWIL™LNIAT MOV < Jawii~0ag %08y / op)

TNOIWIL INIAI HOV

19 "I98 juswaoul
1 puo2as |

0 = Jawi| 939G / }IXd

((e N))
(BsW' Qi AIW'dIN'OVES dJWW pidyhindinO | op
0=ddW ‘(Jenegpiing/ Anus >
_ aN3 OVi4d P
s ~
9zI1S 30IM =
=> Jopulewsy Qmms_.ovoono.mmi.&s_s_ ‘prawindingo o_uJ ﬁu«_Ewcm.F papunog / oD -
((BSW'Q14'QIN'd WDV IV PIdYINAING / op) \ I1dWIS SSH J awvadn bva __J
(1xoN)BspenenD ‘++ Q|4 / XS puno4
Oeneaping Aivo 192IS Muom_ﬁ“,wwmv azig penes SuoN ==
_ JHOW OVud P, - . o Ywsues)~papunog
JZIS MO3IHI ()6eigorepdnues
1 = Ovyd l 0=dAN 14912pan.es|d
°ZIS 3AIM / {ssed] (Joswananp - ==
8218 JQIM < Jopuieway < Japuleway /8218 3AIM < 32115 1 96esSaN 12410 3lvadn 3403 Jlusues] ~papunog
- pan _
Bswy‘epood ‘INWPRAYINGING 7 © 0=31epdn"papunog <- Buipuad HYQA ON / op 31vadn_19373S
(BsiropoodoOVI YN pLEVICIRO 1 o8 _ _ojepdn papunog = dN / Ixd ~ ~
0=l "++QIN 'L=dW 7 Aus O=lwsuel} papunog «<- Buipuad Dvqg oN 7 Aua
a71S 3AIM =
=> sopurewiay _ 1sdid ovad D N ONIaNnog) QANsiepdnslas el
q / | == Bbuipuad sajepdn ()BswananD
\ INSWOVHI OSW) oBessop DYQ
()Buipuadssiepdn = Buipuad sejepdn / op
(yereqpiing / Aqua H (JwwoDspIMYS / op
U S31vadn ¥0d4 ¥I3HD) ___319 wwod)
_ i Paped”
L ONIGN3d WIKOD) 0 == Bulpuadsajepdn
== JUBAT MOV ++un"Anay
9’8 abessoy DVQ ‘()5ei3orepdyes

_ MOV ONLLOIdXI WWOD)

_0 =0 Ay
1 8134 INIAT XV
1 PanIB29Y WOV

ﬂmommmmwilm:_omSoJ_Em:E 11

US 9,124,444 B2

Sheet 37 of 55

Sep. 1, 2015

U.S. Patent

9¢ b1

ﬁ I = elepdn pepunog ‘| = Buipuad selepdn ‘()bej4eiepdnias <- ajepdn jeusayxg / Aue

~
(JuoneoynoNjeUISIUlS|PUBH < - Sjepdn [EwIa)u) :_xo_

31vadn 31GNVH

[

(noysdeugaye|
/ ®epdn

Y

(\usn3 OAN PN 199/ 0p)

~
ﬁ (Jonnaiepdn / op

Z

sjepdnoN ++JU9A3 OAN / ix3

f 1N3A3 31vadn |

puno4 Jusng =
_ AIN3A3 139 y

0 =3uaAg ONAN

1
()sluaagbutoBiNOsse0id VS 0 == @jepdn’_pepunog

2 PUNO SJUSA] ON

)
0 == 8)epdn papunog -

|l == a)epdn papunog
® pUnO4 SjusAj ON

a3axoo01g s3alvadn)

| == o1epdn popunog | AQv3y 0 == alepdn” papunog

LOHSJVNS LINSNViL

(
.

(suaA3 BuloBino ss3904d

U.S. Patent

Sep. 1, 2015 Sheet 38 of 55 US 9,124,444 B2
Process_lncoming_MessagesJ
4 MSG_READY N
Incoming Fragmented Feedback
Frag Timeout NewNode# / Drop Msg
T Expires /~ FRAGMENTATION N
l 3
4 FIRST_PKT) /~ __FRAG_ERROR) (H)—
entry / Incoming Packet < exit / Recurse w/ Current Data
exit/ Save (Apild, OpCode, Node#, \do/ Drop Packet)
Cmd/Fb, Data) J FID!=0 or
FRAG=1/ FRAG=0 FRAG=0 or | incoming
eset Fra " C d
Timeout- FRAG_FIRST Invalid MID | New Node# /
»| entry / Incoming Packet Drop Msg &
MFP=0 exit / Concatenate and Save Data Send Rejection
do / Check (FID=0, Node#, FRAG=1)
MFP=1 MFP=1
y
([FRAG_MORE A |
entry / Incoming Packet
FRAG=0 & MFP=0 exit / Concatenate and Save Data
. do / Check (FID=Last_FID+1,
_MID=Last_MID, Node#...) J
\.
\ J
3]
W Reject
: Message
Incoming y
Simple
Feedback SECUR.ITY
4 do / CheckFirewall()
(__NSG_FEEDBACK (- END_BOUNDING)
do / HandleFeedbackMessage() Accept Message / Eo / (MMP == 0) -> Bounded_Command= 9
Reset Cmd Timeout
]]
[
f START_BOUNDING \ Cmd Timeout Expires /
@ /MMP & Command -> Bounded_Command=j Send Error
(" MSG_PROCESS N
Incoming Simple
Feedback Callback or More Data
Recursive to Send
I EXECUTE Command

Eo | SA_ProcessIncomingMessage()

SEND DATA
do / Send Updates

or Fragmented Feecback

Complete &
E’Sﬁﬁﬂ"' Recursive C%Tlpleml &
C d erna
Complete omman? _Callback Incoming
/4 SEND_ACK Y ?agé?,emf?
entry/ SetUpdateFlag(ACqu._ eedbac
do / Transmit ACK Drop Msg
ACK Sent
Internal Command Complete Complete &

Internal Callback

P

4

Incoming Command /
Drop Msg & Send Rejection

L

Fig. 37

US 9,124,444 B2

Sheet 39 of 55

Sep. 1, 2015

U.S. Patent

Y

ommummws_ puas p|

[

(abessow xau
ajo|dwo?) vonesunjy

ojje)
way ¢l

i3

Jo e - - - -

MOV 10} ajepdp)

ag - ajeidwo) ...Em..ﬁ.Eoo Z

[pepasN YOV puewwiod yoegye)

i

439

| —

" ()Bsyyenanp 114

s [oBessey peojfed niny]

" (joysdeus .auooao_w
) M 5 ‘ande) ejeq |
' | (peoifedninipeo 6 SPESSIIN 18D -01 "
—_._ Oebaping vs '8 i !
- (pex3dPIM L

I

cmme.mB:ao_o 5

e e e e, e e e e === = = = — =

t
T
i
< i
- AwmmmwmmE 19430 8%00}q) Bulpusd ugneaunwwod :9
l
|
|
|
|
1
1

) [ssa99ng]
! mno
_.._HIII...III|IIIIIIIIIII...IIILIIII.v
1 t |led 7 ssa00ag iy ! ¥
“ M _1 . {()Bsyyenanp ¢ _ -
1 1 [1 _“_.Al
" X ' " 00ANtepdnaIes 2 Lle
1 1 ' 1 ' Owwodepim vy
] 1] 1 1 1
1 1 L [L 1

;
;

Iqm: 13siedabessap:

13|PUBHUILODAPIM:

JUSAJOAN:

13)pueHajepdn:

Vs

uje:

Wmommmmo_z 3QIM Pues ps

8¢ "Bi

US 9,124,444 B2

Sheet 40 of 55

Sep. 1, 2015

U.S. Patent

N

2

HVYN / MOV
pusg

]
sabessol JQ|M puas
)

4
4

F.------_

4

R s s R TN SR

()6e|goepdmyes :z4

1
1
1
|
T
l
1
il

[

WNoJ WaA3 ?oEEo:_ 6
1

[JOAN ul sisiBoy g

jousdeug elgq oyeL g
aINIdNAS 1UBAT DAN Piing :2

L

]

L

' (Juowspaniasay 19

.

c?oEws_o_Emgo.mO g

]
'Bupipayn
tajeadng
b9 1003 ¥
]

]

[SRR TR

()eje|dwonefessayybuiwoou) ;11
I

1
HVN/ OV 0L

Jo oo e e e e - - - -

(waa3ppy Vs i€

ucmLEoo VS 58004 :Z
ommmwmm&_m:_Eouc_mwwuo_n_l<w” 1

L

s A T R T SpRR R SRpY (E

(Y]

I R L L L LR LR == ==L Erl

e =t - - - - — -

1
]
1
]
1
T
1
1

iajpueyajepdn:

deapAuowapyojweuiq:

JUAJOAN:

13|pueHpUBWIWOY;

vS:

ng:o>m OAN PPY PS

6< "Bi4

US 9,124,444 B2

Sheet 41 of 55

Sep. 1, 2015

U.S. Patent

]

a39|dwo) sjepyin pepunog :6

sabesgay 3AIM Puas

[iuag aJe sajepdn |1e 1un]l
' '

1 \noo_

1
T
1

b

sBej4 awi) 19s9y :8

|
|
[}
[}
!
)
I
i
1
|
[}
1
|
|
[}
|
1
1
T
1
1
1
(]
]
]
1
1

f

:

-|-—----[F-qd-=-==|-====}F === =-.
A

sseo0ug uj 8jef

dn vmuczom"”h
1

e]
(ferderepdniag 19
1

[papaaN ajept h]

||||| G — -

papaaN aiepdn :g
]
]

joysdeug ¢
geqgy ,

(JoAN=¢pdn :¢

! {sjusaAg palajs1ba)

]

nvl

waoo_

F e m e[rmmmr e m -
4

o~

-
Q
o

.—

c£=m>m_m_.4__om~=0mmwuo._+l<m Y
1

L

JS[PUBHWILIODIPIM:

Jo|puBHawlY:

JUBAZOAN:

13|pueHajepdn:

vs:

uel:

ﬂacm\m OAN eiepdn ps

oy P14

US 9,124,444 B2

Sheet 42 of 55

Sep. 1, 2015

U.S. Patent

Ly Bid

sabessa|

30IM puss

se

N

abessaw ajepdn ue

Juas st MOV

B
A

I

A

A
N R

S
N

2

[3

()Bejgeiepdnies €4

()a1sdwopabigssayybuiuoay|
1

[—

N F - == ==|-

F--L-

|||||||||||||||||| »

AYN/ MOV LL

i

()puewwonBuiwoouiapuey 0}
[puewwon om:uwnm aoueddy]

PUBWWOD'YS SS8001d 8

lidv 2109 vs]

e

I

U:m::_:oo IAN 189D 3L

I JF S S

()stawi

uslpueH:g |

1 ()abessapbuinsooujssaooly

1

()deqidenoyys ')

L

A

A J0eieaysaesied 21
]

“'ep g diepo

B e T et " P PP P

"apondo 'qide

e - - - - - -]

R et RSPy O &

I .

VS S

Jam:

13]PUBHWWIONIPIM :

19ssedobessopy:

J19|pueHajepdn:

J9)pueHawy:

Jo|puUBHpURWWIO)
ayoadgddy:

19|puUBHpUBWIWOY):

vs:

ujep :

Wm_u:mEEoo IAN $S9901d ps

US 9,124,444 B2

Sheet 43 of 55

Sep. 1, 2015

U.S. Patent

1 1 1 1
]]] f
1 1 1 1
i 1 1 1
i 1 1 1
])]
Movpusg [T |_.._u X "
' (Beysepdmoes e | | l_x X
" Ow«m_aE+Oommmmm_>_mEE8:_ 8 L D
" " cmmmmw_wEmc_Eooc_mmwo&&wa .
' ' ' '
1 sablessapy 3QIM puss ' "
)]]
' Ll ' ! (104
] _|IV 1 i
] 1 1
]] 1
(JOAINBAISINOBYBpUBH 9)
t T
' IPUBLIWIODYS SS890.d ”ml_ _I_
1 I < L
! 1 ()abessaNbBuNLOdUISSEO0LY ™ YS i}
1 1] 1
" " [a191dwo) u:.mEEoo w>_w._:um~.=
1 i
]] ﬂnoo_
“ L]
1
¥

[]

e R e e T T R T

csmo«%8<|<w"“ l

_ (Jeieqvsoesied :z

e N [y

"ep @ dlepou tepogdo ‘glide) puewwod AN 8101S €

.
>

L

AaIM:

13]pUBHWIWODIPIM:

1esiedobessapy:

J3|pueHalepdn:

J3[pUBHpURWIWOY:

vs: urew:

\ SPUBUIWOY SAISINOTY SS300id PS

US 9,124,444 B2

Sheet 44 of 55

Sep. 1, 2015

U.S. Patent

ep Bid

"N- Bsw :abessaw w“u_>> puag a83g) MoV mbr“ow
NIVW j0 aon_f_ wanbasgns uo CETQOou_>>I<m woy uov_owé_

'
safiessapy 3QIM PUas 1
]

)]

t
t
L
i
t
t

- -

1
abessajy yoeqjeD spyag
'

(JWWIODBPIM VS WoL} POYQAY]

1
'
'
'
sabessapy 3QIM PuUaS !
1
|
el

[e e e e T T R A

P ey e T

]

I
(6ejjpuswiwonyoeq|eD)es 1L
]

(Belgsiepdries 19 |

%

I
/')

do
]

1

I

I

!

()megvsesied 'z

(e1ep 3 gjepou _maooac ‘gnde) puewwon _72 2101S :f
]

Wo? yS S$990.d G

Jeleqidendy” vs L
]

T
)
)
)
L

<

cmwmmmmo_zm_r_Eoo:_mmwuo._a.?m b

3aimi

JIIPUBHUWIWLODIPIM:

lassedabessay:

J19|pueHajepdn:

13|pUBHPUBWIWOD:

vSs:

ujel:

?uszEoo soeqje) sssooid ps

US 9,124,444 B2

Sheet 45 of 55

Sep. 1, 2015

U.S. Patent

(018 'sAejol ‘sia)esy)
s901A8(Q 4O Aljein|d

snjeseddy sojuososig

v "B14

(uoyeoydde Jayi0
Jo aoea)u) 1asn)
iod pu3 uojediddy

g91

vy
snjejs 108109 |
eeepl dORIBUBS Ll - X LH-
jleoRuOUOXE] '
smes _""
X | | --» 1sj2dia)y) snyejg
K SPUBLILLOD nmcton__ |
h ' - 19M 1081100 AL._
m ' : Ajleanucuoxe| _ _“m [P
m 21607 J __- I PUBLLILIOD
IIIII M ‘ -
PUE J3[|0RU0D senqeden -.__-
7y Awouoxe| _._" J—
d A i | |- :o:w_m.v_mmw
Z auodwo) asemyos _ __ !
]
" T _ _ "
| ' AN sjesejeq __ :
m VT Awouoxe] i} | 1 euodiuog atemyos
“ ; \ . . __IIIILIII
" | : —— ==
] 1 "
“ m _—' ettt ' _ m
| m " I
H) ' 4 I
| . aimpnag ‘ |
| Awouoxe] H jojejsues] '
| ' Auwouoxey | ;
| Y I ! I
[m : I
: ‘ |
I tig sulbug Jabeuep «li- o
- Ausouoxe| Awouoxe) _
| _ ' |
e fr |
| |
| aJnjoayo.y Awouoxe| I

F>~<
L \

\
zz'ol

U.S. Patent

Sep. 1, 2015

Sheet 46 of 55

100 102

APPLIANCES | Microwave | Control , , ,

US 9,124,444 B2

16,22 104

/

MICROWAVE
CONTROL

NO PRODUCT
INFORMATION

UPDATES

o

~N

p
| A
COOK
JET DEFROST
BAKED POTATO
STEAM COOK
AUTO REHEAT
DINNER PLATE

h 4
Ianddho) LN RAL-AN Ry

min sec

/ y4
/ { /
for00:30] at [100%)]

Turntable

ADD
STEP

\ (START) @ANCEQ (

DELETE
STEP

Microwave is OFF

Flg. 45 100 102 16,22 104
APPLIANCES | Microwave | Control , , !
- /I II // ~
(Meromae | | [COOK | for[00:30] at[4
min sec ﬂ@@%
80%
INFORMATION GDOA,
50%
Delay?[NO] ¥ -htable
D
(START] @ANCEQ (App j [°§#EEE)
_

Microwave is OFF

Fig. 46

U.S. Patent Sep. 1, 2015 Sheet 47 of 55 US 9,124,444 B2

16,22

100 106 108 110
APPLIANCES | Microwave | Control , , , ,

[[

/ /
{ / I { Ji B
(“csowa | | [JET DEFROST | [POULTRY| [0.3 LBS| [NORMAL |
MEAT
INFORMATION
Delay?[NO | Turnable ON

(START) @ANCEL) (el j (DE#EEE]
N

Microwave is OFF

Fig. 47

US 9,124,444 B2

Sheet 48 of 55

Sep. 1, 2015

U.S. Patent

cl

¢ Jusuodwo)
aiemyos

aoue|ddy

aInjoaIyaly

Awiouoxe|

8y b1

(23qb1Z ‘14- 1N
uoljoauu0)

NIOMI}aN

s3ss ejeq
Awouoxe]

| Juauodwo)
aiemyos

aolnag

aoeua)uj Jasn
U3l Yoy L

2z

US 9,124,444 B2

Sheet 49 of 55

Sep. 1, 2015

U.S. Patent

cl

6v b1

Z uauodwoy
aiemyos

ndod

i pieogIn

ainjoayaly | Jusuodwo?n

Awouoxe)] alemyos

aoinaqg
asep9u] 135N
juayg uyy

nnn

aosuelddy

——91

e

US 9,124,444 B2

Sheet 50 of 55

Sep. 1, 2015

U.S. Patent

(s.pa1 pue siapoou3y ‘shay
ynum aosepiau) 1asn)
€ Juiod pu3 uopedyddy

(s.pa1 pue siapoouz ‘skay
YIIm aoepiayul Jasn)
Z juiod pu3 uonjealddy

T 7
¥ ¥
21607 291607
pue Jajjosuc) pue 13jjos3uo)
A ' y Y y
. ‘ » ‘
19jpuey Jojesauag) Ja|puel 10je40U90)
indug inding induy ndino
4 : L) :
£ Jusuodwo) aigmyos Z usuodwo) aiémyos

(s,pa pue siapoauzy ‘skay
Yim doepdjul 1asn)
} 3ulod pu3 uogesdiddy
A

Y

o160
pue J3]josju0)

7y :
:

nduy

13|puey

Liojesauss

indyno

A

1el]f | Jojejsuei}]

0S ‘b14

[Xe) A 1l Awouoxe)
tesemndacnccacanaaa memmmemen l€¢------ deracciiiriccccanaaaan .
)))
g : ¥ :
Buz loe-pf Jobeuel] |- IndinQ 193uuo)
- — » Awouoxe] Ajjesjwouoxey
u_ S9MI98G0 yy
sansasqo saysyqnd >.m_nwnoﬂ._oum
Y induj j23uuoy
A|jes1wouoxey
. _] 191053u09
(aseme areys) - -" >Eo_.3xm._. '
8)gs (shusuodwon [eims men : : saniqeded
L T - % Awouoxej
Awouoxej ! sajeasd
Gop aymys-ginuw) | T =
w&ﬁmnwﬁ sapqeden aasinaey | sjesejeq
| @amv3ny2sy Awouoxey Awouoxe)

/

VoS

U.S. Patent Sep. 1, 2015 Sheet 51 of 55 US 9,124,444 B2

Taxonomy Engine

Taxonomy Controller

Taxonomy Model

Taxonomy Operators

Fig. 50A

US 9,124,444 B2

Sheet 52 of 55

Sep. 1, 2015

U.S. Patent

UM SauIquo)

»

.

a1emM}jos Jaylo

1G "Bi4

abew

3|4 alemyos

S\u g se|Idwod

a|qepeojumoq

<

o] spodx3y

ainjonns
Awouoxej

<

sainByuon

|ojuon
/
peojumop Peppaqu3 9l
Aunn
uoneInbuuoy) |e Jaubisaq
[ensia sasf

U.S. Patent Sep. 1, 2015 Sheet 53 of 55 US 9,124,444 B2

Taxonomy Capabilities of

Taxonomy Capabilities of Wash Cavity for Running State

Wash Cavity for Programming State

E]@ Device: Wash Cavity El@ ‘DeVlCEWEShCBV"Y:
B Atribute: ycle : Default = None E}- B3 Atribute: Add Garment : Defautt = Yes

@ Value: None : 0 @ Value: No: 0

B@ Value: Quick Wash : 1 @ Value: Yes : 1

G8-{#) Value: Hand Washables : 2 -3 Atiibute: Control Lock : Default = Unlock
E@ Value: Silk : 3 i m Value: Unlock : 0
E@ Value: Woot : 4 @ Value: Lock : 1
@8 vatue: Delicate : 5 EHZ3 Attribute: Remaining Time : Default =
E}@ Value: Normal/Casual : 6 i i= Range: Min = 0, Max = 89, Inc = 1
D@ Attribute: Deep Clean (Steam : Default = OFf G2 Attribute: Sensing Mode : Default = On
@ Value: Off : 0 @ Value: Off : 0
@ Value: On : 1 @ Value: On : 1
G- Attribute: Delay : Default = 0 [(1-Z3 Attribute: Wash Phase : Default = Soak
J:E Range: Min = 0, Max = 89, fnc = 1 m Value: Soak : 0
[-j@ Attribute: Extra Rinse : Default = Off @ Value: Wash : 1
@ Value: Off : 0 @ Value: Rinse : 2
-@ Value: On: 1 m Value: Spin : 3
[-:}@ Attribute: Oxy Dispenser : Default = Off
@ Value: Off : 0

@ Value: On : 1

E‘@ Attribute: Rinse Temperature : Default = Cold

@ Value: Cold : 0 .

G3-f23 Auribute: Solid Level : Default = Normal F | g . 53
@ Value: Light : 0

@ Value: Normal : 1

@ Value: Heavy : 2

-3 Attribute: Spin Speed : Default = High

@ Value: No Spin : 0

@ Value: Medium : 2

@ Value: High : 3

~[#) vatue: Extra High : 4

-Ea Attribute: Wash Temperature : Default = Warm
~[#) Vatue: cold 1 0

@ Value: Warm : 1

@ Value: Hot : 2

0

[B-@ Value: Active Wear : 7

[B~@ Value: Bulky Items : 8

[B-@ Value: Heavy Duty : 9
@-[#A: value: Whitest Whites : 10
EB-@ Value: Drain/Spin : 11

EB-@ Value: Rinse/Spin : 12

EB-@ Value: Scak : 13

@ Value: Clean Washer : 14

Fig. 52

U.S. Patent Sep. 1, 2015 Sheet 54 of 55 US 9,124,444 B2

/ 202 / 200
Event Event
Observer Source

204
Begin Event Group Message

A

Event Message 1

A

Event Message n

e
/

Event Message 2 / 208
L
-

End Event Group Message

Fig. 54

U.S. Patent Sep. 1, 2015 Sheet 55 of 55 US 9,124,444 B2

- 222 - 220
Command Command
Executor Source
. 224
’ Begin Command Group Message / ~
228
B Command Message 1 / R
228
’ Command Message 2 / 230
228
B Command Message n /
226
’ End Command Group Message / y

Fig. 55

US 9,124,444 B2

1

METHOD OF FACILITATING SERVICING AN
APPLIANCE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of International
Application No. PCT/US2006/022420, filed Jun. 8, 2006,
which claims the benefit of U.S. Provisional Patent Applica-
tion No. 60/595,148, filed Jun. 9, 2005, both of which are
incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to network systems of appliances and
the software architecture of the network.

2. Description of the Related Art

Household appliances are typically comprised of one or
more components which cause the electromechanical, elec-
trothermal, and electrochemical operations of the appliance.
For example, an oven may include an appliance management
component, having a printed circuit board (PCB) with
memory thereon, as well as a user interface component, such
as a control panel or keypad for a user to issue commands to
the oven appliance. The basic appliance models typically are
difficult to design, develop, test, diagnose, control, and debug
due to the diversity of componentry and the associated diver-
sity of implementation choices. This diversity is an impedi-
ment to creating interoperable, reusable, value added com-
ponetry.

It has become known in recent years to interlink the com-
ponents of an appliance by an internal communications net-
work capable of sending and receiving control messages for
controlling the interaction between the internal components
of'an appliance, as opposed to the use of a plurality of discrete
circuits, with each discrete circuit responsible for an indi-
vidual communication between related components and
implemented by hard-wiring ribbon cables or other connec-
tors or harnesses between the components. This internal net-
work affords some degree of universality in connecting the
components internal to the appliance, however, each compo-
nent typically needs to be enabled with software within its
microprocessor and the adjacent hardware circuitry to
achieve network participation. One example of this internal
network used within a household appliance is the WIDE
network protocol, created by Whirlpool, Inc., the assignee of
this document.

SUMMARY OF THE INVENTION

A method of facilitating servicing an appliance having a
plurality of controllable components and at least one control
program for controlling the controllable components
includes establishing two way communication between an
appliance and a remote client, selecting a diagnostic test with
expected results, transmitting from the remote client at least
one command message to the at least one control program
based on the diagnostic test, the execution of which changes
a state of the at least one controllable component, observing
on the remote client the state change in the at least one
controllable component based on the execution of the at least
one command message, and verifying the expected results
based on the observation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration showing a household
appliance having an internal communication network inter-

10

15

20

25

30

35

40

45

50

55

60

65

2

connecting a plurality of components, wherein each compo-
nent has a software architecture embedded therein according
to the invention, the household appliance also having an
external communications connection showing various net-
work interface cards (NICs) establishing communication
with various embodiments of external clients.

FIG. 2 is a schematic illustration of the internal communi-
cations network of FIG. 1 showing the software architecture
(SA) according to the invention interposed between the inter-
nal communications network and various software compo-
nents of physical components internal to the household appli-
ance.

FIG. 3 is a schematic illustration of the internal communi-
cations network of FIG. 1 showing the internal communica-
tions network functioning as a physical support for the SA
residing on two components (a Lower Layer, which repre-
sents the network physical layer and is not directly associated
withthe SA, and a Higher Layer, which represents support for
packet structure and is directly an element ofthe SA). with the
SA used by the components to communicate through infor-
mation exchange and to interact with other software operating
layers residing on the components to achieve the results in
accordance with the information exchanged between compo-
nents according to the invention.

FIG. 4 is a schematic illustration of a packet structure for
the internal communications network of the household appli-
ance shown in FIG. 1 having a payload portion comprising an
application packet structure for the software architecture
according to the invention.

FIG. 5 is a schematic illustration of communication
between a SA residing on a controller, controller SA, of the
appliance and an SA residing on a component to create a
client relationship, client SA, relative to the SA on the con-
troller where various variables and events are transmitted
between the controller SA and the client SA.

FIG. 5A is a schematic illustration similar to FIG. 5 and
illustrating the client as an external client at a remote location
in the form of a customer call support center to illustrate an
exchange of data used to perform remote diagnosis of the
appliance.

FIG. 6 is a schematic illustration similar to that shown in
FIG. 5 illustrating a discovery technique contained in the
software architecture of FIG. 1 according to the invention.

FIG. 7 is a schematic illustration of various exemplary
states of a software operating environment typically operat-
ing within the Control Logic element as shown in FIG. 3
within a component of a household appliance, which is illus-
trated as a washer.

FIG. 8 is a schematic illustration showing the response of
the controller SA to various information exchanges in the
form of commands issued and received by other SA installa-
tions to validate or reject those commands based upon the
state of the household appliance as well as the internal state of
the controller SA.

FIG. 9 is a schematic illustrating the usage of binding to
link multiple data exchanges to form a single command and/
or update between a client SA and the controller SA.

FIG. 10 is a schematic illustration showing the SA in rela-
tion to the overall software environment of a component,
where the software environment comprises various software
operating layers, with the software architecture comprising a
command handler, an update handler and an internal commu-
nications network layer interface for interconnecting the SA
to the internal communications network of the household
appliance.

FIG. 11 is a schematic illustration showing the invocation
of the controller SA by the supervisory scheduler (MAIN)

US 9,124,444 B2

3

residing on the main controller, which also invokes a subrou-
tine call to expose functions of client SA’s on the network.

FIG. 12 is a schematic illustration showing the interface
between the internal appliance application logic and the soft-
ware architecture shown in FIG. 11 including a callback
section.

FIG. 13 is a schematic illustration of the example imple-
mentation of the software architecture shown in FIG. 11
including an appliance initialization section.

FIG. 14 is a schematic illustration of a pair of software
operating environments, each corresponding to a different
component with its own SA, and connected by the internal
communications network.

FIG. 15 is a schematic illustration of a persistence node
exposed to other components within the Parrot Appliance via
network 14 and supporting packet structure 28 of the software
architecture 10 of FIG. 1 according to the invention.

FIG. 16 is a schematic illustration of a prior art method by
which external commands are translated into key presses for
testing household appliance functionality.

FIG. 17 is a schematic illustration of the interaction of
user-initiated key presses and externally-fed software com-
mands are passed as arguments to the SA for issuing com-
mands to a household appliance to, e.g., test household appli-
ance functionality and/or change the state of the household
appliance machine.

FIG. 18 is a schematic illustration showing mounting of a
NIC in a recess formed in a rear side of the appliance.

FIG. 19 is a schematic illustration showing mounting of the
NIC to a front side of the appliance and a wiring conduit
extending from the mounting location of the network inter-
face card to the rear side of the appliance.

FIG. 20 is a schematic illustration of the appliance com-
prising a safety barrier that allows communication from an
RF PCB located in the appliance and prevents human contact
with excessive heat and/or electricity.

FIG. 21 is a schematic illustration illustrating the use of a
service module that obtains diagnostic data from the appli-
ance and uploads the diagnostic data via a personal computer
over an external network.

FIG. 21A is a schematic illustration of architecture for the
service module of FIG. 21.

FIG. 22 is a schematic illustration similar to FIG. 21 with
the service module uploading the diagnostic data via a tele-
phone line.

FIG. 22A is a schematic illustration of architecture for the
service module of FIG. 22.

FIG. 23 is a schematic illustration of the appliance in the
form of a refrigerator equipped with an exemplary accessory
module in the form of a weather station module forming a
component with a client SA enabling the weather station
module to become operational without manual configuration.

FIG. 24 is a schematic illustration of a fragmentation
packet structure for the internal communications network of
the household appliance shown in FIG. 1 having protocol for
handling fragmented packet integrity, which replaces the pro-
tocol illustrated in FIG. 4 when a message must be broken into
multiple messages.

FIG. 25 illustrates a sequence of packets representing a
series of fragmented messages transmitted in the form shown
in FIG. 2, which are by the receiving SA and reformed into the
original cohesive data sets created by the sender of the pack-
ets.

FIG. 26A is a schematic illustration of the location of
variable map information at a central location, such as the
main controller PC board, which is then communicated to the
boards of the other components.

20

40

45

4

FIG. 26B is a schematic illustration of the location of
variable map information on the controller of the component,
which is collected from the other components on the network.

FIG.27is a UML Sequence Diagram showing a messaging
scenario where a duplicate event request is assigned a variable
address to permit both requests to reside in the network.

FIG. 28 is a UML sequence diagram of a standard format
illustrating the disabling and re-enabling of the realization
event requests.

FIG. 29 is a UML sequence diagram of an acknowledged
event within the SA, where the controller SA waits a pre-
determined time for an acknowledgement message from the
client SA until processing the next event.

FIG. 30 is a UML state diagram of a standard format
illustrating the security modes and firewall provided by this
invention.

FIG. 31 is a UML sequence diagram illustrating the meth-
ods of interaction between a client which must negotiate with
the firewall of FIG. 30 before application messaging can be
fully processed.

FIG. 32 is a UML class diagram illustrating the standard
public interfaces which the SA is able to implement.

FIG. 33 is a UML class diagram illustrating the preferred
implementation of the SA.

FIG. 34 shows the preferred organization of source code
files of the SA.

FIG. 35 shows a collection of inter-related UML state
diagrams illustrating 3 primary states (COMM_IDLE, COM-
M_EXPECTING_ACK, and COMM_PENDING), each of
which possibly having a plurality of sub-states.

FIG. 36 shows a collection of inter-related UML state
diagrams illustrating 4 primary states (READY, TRANSMIT
SNAPSHOT, UPDATES_BLOCKED, and PROCESS_
DAQ_EVENTS).

FIG. 37 shows a collection of inter-related UML state
diagrams illustrating 2 primary states (MSG_READY and
MSG_PROCESS).

FIG. 38 is a UML sequence diagram illustrating the execu-
tion of an ordered collection of internal messages between
components for the purpose of producing a network message
on the internal network from the SA.

FIG. 39 is a UML sequence diagram illustrating the execu-
tion of an ordered collection of messages of the classes in
FIG. 33 of the software operating environment.

FIG. 40 is a UML sequence diagram showing an ordered
collection of messages of the classes in FIG. 33 of the soft-
ware operating environment.

FIG. 41 is a UML sequence diagram illustrating the mes-
saging required to process incoming messages from the
WIDE bus 14 from clients 22/16 which do not require a
response containing meaningful data other than a response
transmitting the success or the reason for failure of the incom-
ing message (the ACK or NAK of API ID=1, Op Code=1).

FIG. 42 is a UML sequence diagram illustrating the mes-
saging required to process incoming messages from the
WIDE bus 14 from clients 22/16 which require a plurality of
response messages containing meaningful data in addition to
a response which transmits the success or the reason for
failure of the incoming message (the ACK or NAK of API
ID=1, Op Code=1).

FIG. 43 is a UML sequence diagram illustrating the mes-
saging required to process incoming messages from the
WIDE bus 14 from clients 22/16 which require a single
response messages containing meaningful data in addition to
a response which transmits the success or the reason for
failure of the incoming message (the ACK or NAK of API
ID=1, Op Code=1).

US 9,124,444 B2

5

FIG. 44 schematically illustrates a taxonomy control using
a taxonomy dataset in combination with the software archi-
tecture to control the operation of one or more components
within the appliance without direct knowledge of the func-
tions for the component.

FIG. 45 schematically illustrates a user interface populated
by a taxonomy dataset comprising a hierarchy of options and
data inputs that will lead the user to selecting options and data
inputs to generate a well formed command.

FIG. 46 schematically illustrates the options available for a
top level option selection with associated data inputs.

FIG. 47 schematically illustrates the options available for a
sub-level option selection with associated data inputs.

FIG. 48 schematically illustrates one embodiment of a
taxonomy architecture according to the invention.

FIG. 49 schematically illustrates a second embodiment of
a taxonomy architecture according to the invention.

FIG. 50 is a modified version of the software architecture of
FIG. 44 for another operating environment.

FIG. 50A is a detailed portion of the taxonomy engine of
FIG. 50.

FIG. 51 schematically illustrates a method utilizing the
taxonomy architecture according to the invention.

FIG. 52 illustrates an exemplary data structure used in the
taxonomy architecture of the invention.

FIG. 53 illustrates a second exemplary data structure used
in the taxonomy architecture of the invention.

FIG. 54 schematically illustrates synchronous data collec-
tion by binding messages in an event group.

FIG. 55 illustrates the technique of FIG. 54 to bind com-
mand messages.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

A brief overview of the invention should be helpful before
examining the multiple aspects of the invention. The inven-
tion relates to a software architecture (“SA”) that is imple-
mented on and communicates over an internal communica-
tions network on an appliance, which connects the various
physical components of the appliance.

Some of the physical components have a corresponding
controller (main controller, motor controller, user interface,
etc.), which may be a simple microprocessor mounted on a
printed circuit board. Other components have no controller.
Typically the components that have controllers (and if there
are more than one are typically also network enabled) coop-
erate through network messaging or other forms of data trans-
mission to directly or indirectly, through other components,
control the operation of all of the components and their con-
tained or attached devices to implement an operation or cycle
for the appliance.

The SA can, but does not have to, reside on each of the
components with a controller. Those components with the SA
or a variant of the SA compliant with the SA (compliance
determined by the ability to send, receive, and process pack-
ets) form a node on the network that can communicate with
the other nodes.

The SA performs multiple functions: identifying each of
the components corresponding to a node to the network;
identifying the capabilities or functions of the identified com-
ponents to the network; identifying the status of the compo-
nents to the network; providing well defined command inter-
faces for each component; providing communication
between internal and external software components that are
not part of the SA; and providing communication between
components non-SA software components on different

10

15

20

25

30

35

40

45

50

55

60

65

6

physical components. In this way, the SA functions to inform
all of the nodes on the network of the presence, capabilities,
and status of the other nodes.

The SA comprises multiple modules, each of which has
different functionality. Various combinations of the modules
or all of the modules can reside on each of the components.
One module having the basic or core functionality for the
invention resides on all of the components. In one anticipated
configuration, all of the modules reside at least on the main
controller, which establishes the main controller to function
as a primary or controller SA, with the other nodes function-
ing in a client relationship to the controller SA. In such a
configuration, all of the nodes would communicate through
the Controller SA.

The SA is sufficiently robust that it can permit configura-
tions without a Controller SA or with multiple Controller SA.
Regardless of the configuration, any component with a resid-
ing SA can function as a client with respect to the other
components.

The internal communications can be connected to one or
more external components directly or through an external
network. The external components would also have one,
some, or all of the SA modules in resident.

Beginning with FIG. 1, the specifics of the invention will
now be described. FIG. 1 is a schematic illustrating one
environment of a software architecture 10, (embodying the
systems and methods described herein and those which
would be apparent to one skilled in the art) in the form of a
household appliance 12 having an internal communication
network 14 interconnecting a plurality of components 16,
wherein the software architecture 10 resides on at least one
component 16 to enable the component 16, and preferably
each additional component 16 has the software architecture
10 in resident, or an alternate able to be interoperable with.
The household appliance 12 also has an internal/external
communications connection 18 shown interconnected to
various network interface devices 20 for communication with
various embodiments of an external client 22.

The external clients will typically comprise computing
hardware and software and networking hardware and soft-
ware able to interact with the software architecture 10. This
may be achieved by including all or a portion of the software
architecture 10 within the embodiment of the external client
or an alternative to the software architecture 10 which is able
to communicate and fully or partially interact with the soft-
ware architecture 10. A number of alternate components (C
dll, Visual Basic Driver, Java Driver, and Active X driver) able
to fully interact with the software architecture 10 have been
implemented.

In connection with the text of this patent application and in
review of the drawings accompanying the text of this appli-
cation, it will be understood that the abbreviation “SA” refers
to “software architecture” as described by reference numeral
10 in this application.

Further, the term “client” is used to refer a component on
which all or a portion of the SA resides and which fully or
partially enables the functionality of the component. The
component can be either an internal or external component.
While client will primarily be used to describe a component
enabled by the SA, client is also used to describe a component
that is enabled by an alternate software that is able to success-
fully exchange messages on internal communication network
14 and communicate with the SA. Generally, the term client
is used when referring to the software aspects and not the
hardware aspects of the node.

The components 16 can comprise one or more devices.
Thus, the term “device” as used in the application can refer to

US 9,124,444 B2

7

acomponentorto a device. The devices can be any electronic,
electro-thermal, and electromechanical elements which col-
lectively form the component or which are attached to a
component with a controller via electrical circuitry (e.g., wir-
ing harness), a physical part which can execute logic, and a
physical part which has memory.

As described herein, the appliance 12 can be any of the
well-known variety of appliances which would be well
known to one skilled in the art. For example, the appliance 12
can be a washer, a dryer, a microwave, a dishwasher, a refrig-
erator, a refrigerator/freezer combination, a stand-alone
freezer, a warming drawer, a refrigerated drawer, an oven, a
combination cooktop and oven, a cooktop, and the like. While
the described environment of the invention is that of an appli-
ance, the invention has applicability to any type of machine
having networked components.

As described herein, the internal communication network
14 can be any well-known interconnecting conduit, wiring
and/or harness, or wireless system suitable for interconnect-
ing the various internal components 16 of a household appli-
ance 12. As described in the background section of this appli-
cation, the WIDE network is a suitable internal
communication network 14 to provide the internal commu-
nications necessary to support the software architecture 10
according to the invention. It will be apparent to one skilled in
the art that the software architecture 10 can run on any suit-
able internal network, and that the illustrative example pro-
vided herein (i.e. the WIDE network) is simply one example
of a suitable internal communication network 14.

As previously stated, component 16 is any processor-based
component or sub-component of a household appliance 12.
Examples of components 16 suitable for receiving and instal-
lation of the software architecture 10 according to the inven-
tion include, but are not limited to, motor control micropro-
cessors, microprocessor enabled key pad controllers, LCD
user interface controllers, and other device controls typically
included within a household appliance 12.

The internal/external interface connector or slot 18 is suit-
able for connecting a plurality of types of devices 20, which
are able to communicate on the internal communication net-
work 14 and at least one other network such as RS-232 serial,
various forms of wireless (Zigbee, Wi-Fi, etc), USB, or wired
Ethernet, etc. The functionality of the device 20 may be
strictly limited to protocol and physical layer conversion, or
my be expanded to support value added services in addition to
its base protocol bridging function.

Examples of external clients 22 to which the software
architecture 10 permits a household appliance 12 to be con-
nected include, but are not limited to, a personal computer-
based control development, a factory testing application, a
diagnostic application, a field test application, and an inter-
face to a connected home environment. This connection to the
external environment, whether adjacent to or remote from the
appliance 12, enables value-added applications to communi-
cate with the appliance 12. Some examples are:

Automated factory test

Energy Management applications

Engineering development tools

Appliance Service and Diagnostic Tool

Electronic Controls Manufacturing Functional Verification

Testing

Consumer Applications . . . etc.

The system level architecture (mechanical, electrical, and
software elements participating to achieve auseful purpose of
the household appliance) includes the software architecture
10 and software elements apart from the software architecture
10. The collection of software elements, including but not

25

30

40

45

55

65

8

limited to the software architecture 10, within the micropro-
cessor of a component of the system architecture is herein
referred to as a software operating environment 16A. The
software architecture 10 is comprised of three components: a
core implementation, an application protocol definition, one
or more application program interfaces (referred to herein as
“API” or “APIs” in the plural).

Core Implementation

The core implementation of the software architecture 10 is
a collection of software modules (examples found in FIG. 3
are SACore, SADiscovery, SADAQ, SAPortMemory,
SAPollVariable) executing in an appliance control micropro-
cessor. As shown in FIG. 11, the core implementation is
preferably executed in the MAIN loop of the appliance con-
trol microprocessor which will be apparent to one skilled in
the art. The core provides a common application messaging
layer over the internal communication network 14 and is
based on a flexible design enabling the development of cross-
platform connectivity applications. As part of the core imple-
mentation, a core API will exist which will be uniformly
implemented on each appliance. Moreover, where uniform
implementation is not practical, a discovery mechanism may
be used, allowing adaptation by the client to the non-unifor-
mity.

Application Protocol Definition

A protocol is a standard procedure for regulating data
transmission between nodes in a network. Messages are sent
across the internal communication network in one or more
packets of data, which are then assembled to form a commu-
nicated message. There are two applicable areas of definition
relative to the software architecture 10.

1. Packet Definition: is the pre-defined meaning for each
byte within a collection of bytes which make the packet,
or bits or bit ranges within one of those bytes therein.
FIG. 4 and FIG. 24 and their accompanied description
represent the Packet Definition of the software architec-
ture 10.

2. Message Order and Messaging Rules: The definition of
a Protocol is generally expanded beyond the packet defi-
nition (1) above to include rules governing the expected
ordered collections of messages necessary to accom-
plish certain useful transactions. Examples of Ordered
Messages with Message Rules (transactions) are shown
in FIGS. 6, 9, 27, 29, and 31.

Application Programming Interfaces

An APl is acommunication and messaging contract, which
specifies how one network node communicates with another.
This is accomplished by defining the available function calls,
the arguments to each function call, the data type of each
argument, and in some cases, the valid values of each argu-
ment.

In many cases, APIs are specific to an application or appli-
ance 12, and therefore are not considered as part of the soft-
ware architecture 10 collection of Core (standard set of) APIs;
rather, the software architecture 10 core enables and exposes
multiple API’s to the client 16, 22, and possibly 20.
System-Level Architecture

The software architecture 10 was designed to achieve sev-
eral objectives over time.

1. Business productivity within the constraints of existing

control architecture.

2. Business productivity though enablement and realiza-
tion of new control architecture.

3. Support and better enable core business functions of
Innovation, Manufacturability, Quality, and Serviceabil -

ity.

US 9,124,444 B2

9

4. Enable new growth opportunities by enabling produc-
tion appliances with the software architecture 10 which
with the addition of the connector 18 creates the ‘con-
nectable’ appliance. This approach minimizes the risk
and cost of connectivity by externalizing the cost of
networking electronics.

To realize the full potential of this architecture, a simple
connector can be available on the appliance 12 so that a
network card can be plugged into the appliance. See FIGS. 1
and 18-22 for examples of suitable external NICs 20 con-
nected to the appliance 12. As the appliance 12 already has an
internal, low cost network 14 for its internal purpose, addi-
tional wiring to connect the internal communication network
14 with the external NIC 20 via an internal/external interface
18 is minimal and can be accomplished in a known manner,
such as by a three-wire serial cable, an external connector, and
a mounting fixture.

The software architecture 10 can preferably reside on all
components 16 of the household appliance control system.
However, where cost or other constraints are prohibitive, the
software architecture 10 can reside on a sub-set of the com-
ponents 16 within the control system of the household appli-
ance.

Example benefits of this “connectable” architecture
include, but are not limited to: external NICs 20 can be added
after market, reducing base cost of the appliance 12. NICs 20
can be developed supporting multiple network technologies,
applications and NICs 20 can be cross-platform and generic
due to the standard interface presented by the software archi-
tecture 10, an internal low-cost network (such as the WIDE
network example) is used as a standard, API framework and
discovery allows many value added commands, the software
architecture 10 uses bounded events to preserve state and
make efficient use of bandwidth, and the software architec-
ture 10 is designed to be configured at runtime allowing
program developers a more flexible architecture that can
reduce time to market.

FIG. 2 is a schematic illustration of the internal communi-
cations network 14 of FIG. 1 showing the software architec-
ture 10 according to the invention interposed between the
internal communications network 14 and various software
components 16B within the software operating environment
16A internal to the components 16 making up the control
system for the household appliance 12. The components 16 in
FIG. 2 represent typical components found in appliances 12,
such as an appliance manager (main board or motherboard)
and another component such as motor control and a control
panel or keypad interface, generally referred to as a user
interface. The “Energy” and “Diag” indicia in FIG. 2 are
examples of typical non-core functions performed by the
software architecture, such as energy and power management
(“Energy”) and troubleshooting or diagnosis (“Diag”). Not
explicitly shown in FIG. 2, are core functions (API 1-7 and
10) performed by the software architecture and represented
by the indicia 10.

In addition, the software architecture 10 can be extended to
many other types of system architectures where data
exchange over peer-to-peer communication is desired. These
include multi-node systems where multiple PCBs such as a
motor control, appliance control, and smart sensor boards
communicate within the appliance 12 using the software
architecture 10. The software architecture 10 discovery pro-
tocol illustrated in FIG. 6 (and described later herein) can be
used to enable a component 16 whose presences causes other
components 16 to adapt their control functions to create new
behavior or performance or expose new capability to the
consumer. The component architecture of FIG. 2 (structural

20

25

30

40

45

50

55

10

model) along with the discovery behavior of FIG. 6 along
with the component identification scheme of API ID, Type,
Version (see API ID=3) are a basis for the invention embodied
in 10 to enable the appliance with a new dynamic and intel-
ligent system architecture.

FIG. 3 is a schematic illustration of the internal communi-
cations network 14 of FIG. 1 showing typical appliance con-
trol components 16 exchanging messages via the internal
communications network 14 of the household appliance 12
comprised of a lower layer protocol, WIDE being an example
thereof, which accounts for OSI layers of PHY, LINK, and
partial Network layer functionality and a higher layer proto-
col supported by the software architecture 10 (which
accounts for OSI layers of Application, Transport, and partial
Network layer functionality) according to the invention. The
lower layer protocol functions as both a physical and link
layer between the higher layer associated with the software
architecture 10 and the components in the appliance. In this
way, the software architecture 10 uses the lower layer proto-
col to communicate with a first software operating layer 17
that implements the control logic of the controller 16 relative
to client 22, as well as using a second software layer 19 to
bypass the control logic and directly control the devices asso-
ciated with the control 16. The devices in FIG. 3 are the
physical elements that represent the functionality of the con-
trol component 16. FIG. 3 illustrates the control architecture
10 from a software/protocol stack perspective.

In addition, FIG. 3 provides a schematic illustration of two
modes of operation enabled by the software architecture 10
which control the access to and the level of intervention
between the network messages exposed by the software
architecture 10 and the internal RAM and EE and other forms
of' non-volatile memory of 16 A as well as the Output Device
Layer, which is a low level software operating layer 16B
residing within 16A and providing direct control of the
devices for the component. The software components 16B
having direct control of the devices do so by having direct
access to the micro-processor port address memory, which, in
turn, maps to the physical pins of the micro-processor which,
in turn, are connected through various electronic apparatus to
the electromechanical devices.

Software Operating Layer 1 of FIG. 3 represents appliance
specific software components 16B which interface the net-
work messages received by software architecture 10 to the
Application Control Logic resulting in the Application Con-
trol Logic to take some action. When the appliance is in a
Development State, an additional Software Operating Layer
2 (comprised of API5 (low level API) and API 7 (the memory/
Port API)) enable the network messages of AP1 5 and API 7 to
change the state of the physical memory of 16A and the
devices. In this way, the devices can be controlled indepen-
dently of the application software, which typically controls
the devices in accordance with an operational cycle. The
direct control permits the each function of the devices to be
independently controlled, which is very beneficial in devel-
opment or diagnostic conditions.

Software Operating Layer 2 is enabled to effect state
change by a special network message exposed by software
architecture 10 and also additional logic which is customized
for the various states of the appliance (example shown in FIG.
7). During development state, it is preferred that when the
user interacts with the appliance via the user interface of F1G.
3, Software Operating Layer 1 will not receive the associated
user interface inputs. Instead, Software Operating Layer 2
will receive the inputs from the user interface. Subsequently,
Software Operating Layer 2 may interact with the Alternate
Logic of FIG. 3. The Alternate Logic may in turn make

US 9,124,444 B2

11

function calls onto the Control Logic of Software Operating
Layer 1, change values in memory, or change the state of the
attached plurality devices. However, during development
state Software Operating Layer 1 is not able to effect the state
of'the user interface (LEDs, lamps, buzzers, text and graphic
displays, etc). Development State renders the Control Logic
of Software Operating Layer 1 ineffective unless invoked
from Software Operating Layer 2. During Development
State, the implementation logic of API 5 and 7 and the Alter-
nate Logic are in complete control of the Appliance 12 and its
associated componentry.

Development State reverts back to the Idle State (of FIG. 7)
when a special network message is received. In addition, it is
contemplated, that at least one pre-determined key press of a
sequence of key presses may also result in a transition from
Development to Idle state.

Software Operating Layer 1 operates independently of the
enablement of Operating Layer 2. The purpose of the devel-
opment state is to allow and enable operational cycles that
were not previously contemplated. The advantage to this
approach is that implementations and configurations of the
appliance, some of which are illustrated in FIG. 1, do not
require new software modifications to any component 16 of
the appliance because the appliance has the capability
through the software architecture 10 to support any imple-
mentation or configuration contemplated.

There are many uses for this capability. They include but
are not limited to:

1. ability to add new functional componentry to an appli-
ance enabled with software architecture 10 achieving
new behavioral characteristics and cycles of operation
without modification to the pre-existing functional com-
ponentry. Examples of this are
a. adding steam control to a washer, dryer, oven, and

microwave

b. adding energy and other resource management com-
ponentry to an appliance

c. adding networking componentry enabling connec-
tions to external networks in addition to the internal
network 14.

d. adding a card reader to a commercial appliance in
order to create a pay for use usage model.

e. adding a memory device which comprises additional
cycles of operation available for selection and invo-
cation by a client node or application or a user inter-
acting with a user interface.

2. performing diagnostic tests, which can be accomplished
by actuating each output sequentially to verify the
expected results (examples: heater on—observed tem-
perature increase, fill valve on—observe water level rise,
ice crush motor—observe rotation of crushing appara-
tus)

3. performing automated factory tests

4. performing automated performance testing and DOE
executions

5. performing automated lifecycle testing

6. performing component 16 unit testing and automated
regression testing

7. performing automated ECM testing

8. performing other forms of ad hoc debugging and testing

9. enabling an alternate client device (example: PC) to
control the Appliance 12 allowing the universe of select-
able cycles of operation to be developed and tested using
alternate software operating environments 16A to that
which is typically required on the final production
embedded computing componentry 16 which offer more

10

15

20

25

30

35

40

45

50

55

60

65

12

productive programming environments resulting in a
reduced time to market for new appliance models.

FIG. 41is a schematic illustration of'a packet structure 24 for
the internal communications network 14 of the household
appliance 12 shown in FIG. 1 having a payload portion 26
comprising an application packet structure 28 for the soft-
ware architecture 10 according to the invention. Packet struc-
ture 28 represents a well formed message which the software
architecture 10 can create and send to other components 16
and 22 (having an occurrence of the software architecture 10
or a variant of the software architecture 10 which has been
designed to be operable with packet structure 28) for the
purpose of a meaningful exchange of data. Packet structure 28
occupies the position 26 within Packet structure 24, but
packet structure 28 could occupy an alternate position in a
variant of packet structure 24. 28 A represents a packet struc-
ture within 28 which is defined according to the values of API
Id and Op Code of packet structure 28.

In a network protocol, a packet (sometimes called a mes-
sage) is a collection of bytes which are transmitted sequen-
tially, representing all or part of a complete message. Gener-
ally, it is composed of a header, which includes routing
information, a body (also referred to as “payload”) which is
data, and a footer which sometimes contains a checksum (i.e.,
a CRC sum) or a terminator, such as an “end” flag. The
payload is a collection of bytes contained in a packet. The
payload is the data being transmitted between the application
layers of two nodes 16. The function of the network and the
protocol is to get the payloads from one node to the other.
Sometimes one protocol is sent as the payload of another, and
in this way, protocols can be nested or stacked. Variables are
named memory locations, which have associated values. One
or more variables can comprise the payload. A transaction is
a series of messages or packets that represent a complete data
exchange between a plurality of nodes.

The relationship between a packet and a payload can have
an impact on the efficient use of available bandwidth. The
tradeoft to be considered is the amount of overhead needed to
get the payloads from one node to another in the context of
application layer requirements.

The protocol packet structure 24 as a first header byte
which is identified by example as OxED, followed by an
address byte having four portions. The first portion of the
address byte comprises a destination portion (D) of bits 0, 1,
2. The second portion of the address byte comprises a broad-
cast portion (B) of bit 3. The third portion of the address byte
comprises a source portion (S) of bits 4, 5, 6. The fourth
portion of the address byte comprises a reserved portion (R)
of'bit seven. The address byte is followed by an identification
byte comprised of a service data unit length (SDU-L) com-
prised of bits 0-3 and a SAP identifier comprised of bits 4-7.
SAP identifier defines the structure of the enclosed Payload
26. A SAP of 4 indicates that the enclosed SDU 26 is defined
by the packet structure 28 associated with the software archi-
tecture 10. The identification byte is followed by a service
data unit which is generally referred to as the “payload” of the
protocol packet structure 24 and is identified generally by
reference 26. The payload 26 is followed by a standard vali-
dation byte, such as a high-byte, low-byte combination or
generally referred to by those skilled in the art as CRC
16-CCITT.

The application packet structure 28 is formed from the
payload portion 26 of the protocol packet structure 24. It is
within this application packet structure 28 that the communi-
cations protocol and data exchange permitted by the software
architecture 10 is carried out. The first byte of the application
packet structure 28 contains an identifier (API ID), an integer

US 9,124,444 B2

13

from 1-255, of the particular API carried by the particular
instance of the application packet structure 28. The second
byte up the application packet structure 28 contains in opera-
tion code (abbreviated herein as “op code™) as an integer from
1-31 in bit 0-4, followed by a command or feedback (Cmd/
Fb) flag of bit 5, a fragmentation (Frag) flag of bit 6, and a
more messages pending (MMP) flagin bit 7. Bytes 3-15 of the
application packet structure 28 comprise the payload (i.e.,
message data) of the particular instance of the application
packet structure 28.

Essentially, the software architecture 10 uses two bytes of
the payload 26 of the network packet structure 24 of the
internal communication network 14 for additional protocol.
The API ID is a unique identifier for a collection of Op Codes
which are organized into functional units. OXFF (255) and
0x01(1) are preferably reserved. An Op Code is a unique ID
within an API which defines and identifies a single command
or feedback message. Each API has an associated Type (2
bytes) and Version (2 bytes) allowing for a large library of
identifiable, functionally related groups of messages (op
codes) to be created over time.

Preferably, x1F (31) is a reserved value for Op Code. The
Cmd/Fb flag indicates whether the message is a classified as
a command or a feedback. A command is some message that
requests an action to be taken, where a feedback is some
message that simply contains information (acknowledge-
ment, event data, etc. . . .). Preferably, the Cmd/Fb flag is O for
commands and 1 for feedbacks.

The Frag flag specifies whether the received message is
being broken into multiple messages (fragments) by the
sender because of the size limitations of the lower layer
protocol’s SDU 26. The first fragment of the message will
take on the structure of FIG. 4. All subsequent fragments of
the message will take on the structure of FIG. 24. The Frag
flag is preferably set until the fragmented message is com-
pleted.

The MMP flag indicates that events are sent as individual
messages but are bounded together by protocol so that the
client can group events together as a complete snapshot for
one scan of the micro-controller. The MMP flag is preferably
set until the last message for a snapshot is sent out. FIG. 9 and
the accompanying discussion provides more detail on
bounded messages.

The MMP flag provides the software architecture 10 the
capability to express the state of an appliance 12 as a function
of independently meaningful feedback variables bounded
together in snapshots.

When the internal state of an appliance 12 changes, mul-
tiple events may be sent which, in total, describe the new state
of the appliance 12. The number of events required to
describe a state change is appliance 12 state specific. There-
fore, special protocol delimiters are used to allow an imple-
mentation specific number of feedback variables to be asso-
ciated with a particular appliance state change. Because these
events are independently meaningful, this approach is pref-
erable in that all permutations of event (data) aggregations
can be created through the use of MMP. This results in effi-
cient use of the identification namespace (API Id and Op
Code) because no new identifiers are required when the client
requires a new combination of data to be sent. In summary,
MMP and the associated rules thereof, allow dynamic and
virtual data aggregation eliminating the need for special
application case specific solutions. In FIG. 9, the net effect of
the MMP flag is shown.

The MMP flag also provides the capability for the embed-
ded implementation to suppress the invalid transient condi-
tion. As the appliance state transitions, it is possible for a set

10

15

20

25

30

35

40

45

50

55

60

65

14

of related variables to change several times very rapidly.
When appliance state is expressed in terms of independent
feedback variables sent as separate events (feedback mes-
sages) without a binding mechanism, ambiguous or invalid
transient states are likely to occur. Moreover, if the client is
executing business logic during the invalid transient state,
logic errors may result in incorrect control or user display
actions. Refer to the section hence, labeled State Integrity, for
an example of how asynchronous data collection is an inferior
approach to data collected synchronously within each scan of
the microprocessor and transmitted within the snapshot
enabled by MMP. In addition, message binding can be used to
group independent command invocations so that they may be
processed in batch.

The application protocol 28 also governs incoming mes-
sages. In general, networks allow asynchronous processes to
communicate, creating the potential for one network node to
exceed the processing capacity of the other by sending too
many requests within a short time window. To prevent mes-
sage overruns, a protocol is used, according to the invention,
which allows the sender to wait for an acknowledgement
before sending a second message.

This feature permits the software architecture 10 to use an
enumeration for this acknowledgement based on the execu-
tion state 8 of the software architecture 10. In this way, nec-
essary information describing message success or failure is
communicated with fewer messages. The command sender
will receive an enumerated acknowledgement for each com-
mand sent. The most common is a positive ACK, which
means that the node is ready to receive its next command. All
other enumerations are a form of failure. Failure is character-
ized by the remaining 254 possible values of the Acknowl-
edgment byte. Of this range 0f 254 values, some are standard-
ized and some are reserved for application specific failure
codes.

Frag and MMP allow the user of the software architecture
10 flexibility in designing the application messaging strategy.
If a developer chooses to use very large messages, Frag can be
used so that messages larger than the payload 28A (i.e., 13
bytes within the exemplary application packet structure 28
shown herein) can be sent by sending the original large data
set as multiple smaller data sets within multiple packets of
structure 28.

By the same token, if a developer chose to use smaller
messages (which are often the case) but wanted to group those
messages together, MMP can be used. For example, if 10
messages of 3 bytes each needed to be send as a group so that
the client application could know that the messages were
related to the same scan of the micro-controller, then the first
9 messages would have MMP set and the last message of the
group would have MMP=0.

The following presents a summary of defined APIs for the
software architecture 10 and then each one of these com-
mands and feedback messages is described in detail. The
advantage of this approach is that it allows the developer to
choose the modules within the software architecture 10 that
are appropriate for the current stage of development (i.e., unit
test, engineering testing, production, etc). Furthermore, com-
piling out certain modules allows developers to use portions
of the software architecture 10 in those cases were RAM/
ROM resources would otherwise be prohibitive. The APIs are
described with their currently-selected application program
interface identifier (API ID), however, any identifier can be
employed without departing from the scope of this invention.
The associated functions made capable by the particular API
are enumerated beneath each API. Bulleted functions (“-")
are feedback messages which are sent from the software

US 9,124,444 B2

15

architecture 10 to the client (such as an internal client 16 or an
external client 22) and non-bulleted functions are commands
which are sent from client (16, 22) to the software architec-
ture 10.

One note on a convention used in this application. The
word “extends” refers to the ability of one API to build on the
functionality of a baser-level API. The extends keyword
means: When API x ‘EXTENDS” API y, then API x=API
x+API y. This notation simplifies the task of record keeping
and API documentation. In other words, API x also includes
those functions specified in APl y. If API x and API y each
specify a function with the same Op Code, the implementa-
tion of API x implementation can take precedence.

The following table describes the Core API (API ID=1):

. Message Acknowledgment

. Publish Heartbeat
Set Heartbeat Period

. New Heartbeat Period
Read Memory

. Publish Memory Data
Read EE

. Publish EE Data
Send Event(s)

. Publish Event

The following table describes the basic data acquisition
API (Basic DAQ, API1 ID=2, Type=1):

Create Numeric Event
Create Byte Event
Clear Event(s)

. Publish Events Cleared
Reset SA

. Publish SA Reset
Set External On

. Publish External On
Set External Off

. Publish External Off

10

15

20

25

30

35

16
The following table describes the Core Debug API (API
1ID=4):

. Publish Saturation
Register for Saturation Message

The following table describes the Low Level API (API
1ID=5):

Set Development State
. Publish State
TBD (Appliance Specific)

The following table describes the Core Key Press API (API
1ID=6):

. Press Key (key index)
Publish Key Press (key index)

The following table describes the Core Memory/Port API
(API ID=7):

Write Memory
Write EE

The Energy Management API is API ID=8. As does the
other APIs, the Energy API is made of a collection of Op
Codes, each representing a useful function relating to energy
management, and having an associated collection of bytes
which are the appropriate paramenters to achieve the func-
tion.

The following table describes the Poll Variable API (API
ID=10):

The following table describes the extended data acquisition
API (Extended DAQ, APIID=2, Type=2): The extended DAQ
is inclusive of the Basic DAQ at runtime.

Get Event Data
. Publish Numeric Event Data
. Publish Byte Event Data

Create Remote
Numeric Event

Create Remote Byte
Event

Get Remote
Variable Data

. Publish Remote

Variable Data

The following table describes the Discovery API (API
1ID=3):

Find Nodes
. Publish Node
Get APIs
. Publish APIs
Get API Info
. Publish API Info
Get Instance Info
. Publish Instance Info

40

45

50

55

60

65

Read Poll Variable
. Publish Poll Variable

The Core API (API ID=1 herein) is the smallest subset of
the software architecture 10 functionality that can be
deployed. However, it is contemplated that other embodi-
ments compliant with packet structure 28 may be developed.
It makes provisions to design the two hard coded data acqui-
sition schemes referenced in FIG. 5.

In the Core API, a protocol mechanism, send Events of
FIG. 5, allows the client (16, 22) to request the event source to
send all or send a specified set of events. In this way, a type of
polling is possible within the framework of the eventing
architecture without separate message definitions or imple-
mentation structures and logic. Moreover, this mechanism
enables robust system startup conditions. For example: if all
network nodes send all events simultaneously at system
power up, misoperation within the software of a client 16 or
22 where the software components therein would not be able
to accurately process the plurality of messages generated as a
result of a power-up condition are more likely.

The DAQ API (API ID=2) presents a dynamic mechanism
query for a component 16 enabled by the software architec-
ture 10. This feature allows the client 16/22 to configure an
embedded software engine (an array of structures whose ele-
ments are instanced and stored in a dynamic memory heap
[see DynamicMemoryHeap of FIG. 33 containing a collec-
tion of NVOEvent structures]) which associates a section of

US 9,124,444 B2

17

microprocessor memory with an event operator (described in
a table below) and arguments. Pointers into memory, values
of the memory, event operators and operator arguments are
stored in the memory heap’s array of structures [FIG. 33
Heap| | containing NVOEvent structures]. As shown in FIG.
5, the DAQ engine can be configured in 2 ways:

1. Application software apart from the software architec-
ture 10 which resides in the same microprocessor can config-
ure the DAQ 30 as is shown by the arrow in FIG. 5 from the
DAQ Init() software component.

2. Secondly, external clients may use the DAQ API (de-
scribed herein) to configure the DAQ from the network 14.

The rational for each method of DAQ configuration is
discussed 3 paragraphs hence.

As shown in the Process DAQ Events State Diagram of
FIG. 36, when the DAQ engine is executed, it iterates over
each event structure, checking the associated memory loca-
tions against the event operator and arguments. When the
event conditions evaluate to a TRUE, message buffers are
constructed within the internal memory reflecting the data
associated with the event condition. When the iteration is
complete, notification messages are generated and preferably
broadcast to the network. Alternatively, notification messages
can be directed to a specific component 16 if additional
memory is allocated to store the network identifier of the
component which initially requested or configured the event.

A developer can use several event operators. Examples
include: on change, greater than, less than, equal to, dead-
band, bitmask, etc. Several Op Codes of the DAQ API are
provided to control the memory heap at runtime such as: clear
Events, add Events, External notification on/off, get Events,
get Event Data, etc.

Intotal, the software architecture 10 supports four schemes
for data collection (all of which are shown in FIG. 5). Two of
the four schemes, describe briefly above, are reliant on the
DAQ. The other two schemes, also briefly described above,
are hardcoded. Each scheme can co-exist within the software
architecture 10. Each scheme provides certain optimizations
at the expense of other resources.

In a client-configured data acquisition scheme, dynamic
events are created. This method can be used if the micropro-
cessor has enough RAM/ROM capacity and is most com-
monly used when the client is a PC application. Using the
DAQ API, a developer can re-use code, require less engineer-
ing time, leverages a proven re-useable eventing module, is
flexible (e.g., can be configured at runtime), and there can be
an optimization of network bandwidth. However, this method
can require more RAM/ROM than hard coded methods and
an embedded client might not have access to needed data files
at runtime.

In the client-configured data acquisition scheme, the DAQ
engine 30 must be provided a memory location in order to
watch for an event. With a variable map, this is practical when
the client is a PC application as in FIG. 26 A. However, when
the client is, for example, another control board that imple-
ments the software architecture 10, access to a variable map is
impractical. Thus, this invention provides functionality for an
embedded variable map located in the memory of a node
implementing the software architecture 10. This variable map
links an APTand Op Codeto a variable address as in FIG. 26B.
Thus, in order to register for an event on said node, the client
needs only know the API and Op Code for that variable, not
the specific memory address.

Using the embedded variable map in the client-configured
data acquisition scheme, the situation may arise where a
particular client is restricted from creation of an event
because the associated API and Op Code pair has already

10

25

40

45

50

18

been registered by another node. In such a situation, this
invention provides that node the ability to request information
about the embedded variable map. Included in this informa-
tion is the variable’s memory address. With this information,
the client node can the register for an event of the same
variable using the variable’s address and a different API and
Op Code pair than previously attempted (see FIG. 27).

An alternative to the client configured DAQ, is a self con-
figured DAQ. In this case, the internal logic uses the DAQ
engine to create NVOEvent structures in the DynamicMemo-
ryHeap of FIG. 33. This can be a useful scheme when the
events to be realized are fixed and are known at the time of
design and there are enough RAM and ROM resources to
reuse the difference engine (the logic contained within the
DAQ 30) of the DAQ 30. Therefore this method has similar
benefits as the client-configured dynamic event scheme, and
moreover, will require more RAM/ROM than hard coded
methods (described below).

In a hard-coded eventing module, a developer can optimize
network bandwidth, optimize use of RAM/ROM and can
conform to the DAQ API. However, this scheme requires a
custom-coded solution to generate the events and does not
rely on the software and logic of the DAQ 30 as shown in FIG.
36).

Using the hard-coded polling method provided by the Core
API, a developer can optimize use of RAM/ROM by creating
custom-coded solution. Polling will generally waste network
bandwidth, but is sometimes used due to its simplicity.

FIG. 5illustrates one example of each type of potential data
acquisition method. An installation of the software architec-
ture 10 can support one, some, or all of the 4 methods. Each
of the installation 10 and the client 16 may have a DAQ API
initialized thereon. The software architecture 10 may have
one or more hard-coded polling variables, one or more hard-
coded events, and/or a DAQ engine 30 as described. Various
variables and events are transmitted between the main soft-
ware architecture installation and the client. For example,
various hard-coded polling variables are exchanged between
the software architecture 10 and the client 16 by the read Poll
Variable and publish Poll Variable methods. Various hard-
coded events are exchanged between the software architec-
ture 10 and the client 16 by the send Event and publish Event
methods. A create Event method is called by the DAQ Init
engine which is sent to the DAQ Engine 30 which, in turn
exchanges a generated event with the client 16 by the send
Event and publish Event methods. The DAQ engine 30 in the
software architecture 10 can also create an event received via
a create Event method received from the client 16.

FIG. 5A is a schematic illustration showing communica-
tion between a household appliance 12 having the software
architecture 10 installed therein according to the invention
and shown in FIG. 1 and a client 16 at a remote location, such
as a customer call support center as shown in FIG. SA. The
appliance 12 has an interface 18 to its internal network 14 and
a network interface 20 which allows it to communicate with
the external client 22. The schematic of FIG. SA shows the
customer service center setting up a variable watch using the
DAQ Engine 5 create Event function and diagnosing a trouble
with the household appliance 12 without needing to send out
a service truck to the residence.

The software architecture 10 can be customized to allow
for the needs of different implementation platforms. RAM
and ROM space and time complexity can be managed, as well
as access to memory locations, and timeouts. All of these are
located in a predetermined parameters file. It will be under-

US 9,124,444 B2

19

stood that the parameters can be renamed, changed, retyped,
added or deleted without departing from the scope of this
invention.

The Discovery API (API ID=3) enables the concept of
“Plug’n Play” architecture. The Discovery API implies that a
physical network node or client 16 can contain n functions,
each encapsulated by a known API with a unique 1D, Type,
and Version. These APIs are portable (meaning they represent
functionality and are independent of the microprocessor, soft-
ware language, and network topology) and re-useable on
other components where the functionality therein is appli-
cable. The Discovery protocol (described in API 3 of FIG. 6)
allows the client to learn the associations between the com-
ponents 16 and the groups of functionality (APIs) which they
contain.

FIG. 6 illustrates a typical Discovery API sequence. Hav-
ing no structures in memory representing the other software
architecture 10 enabled components, a client 16 transmits a
command to locate components 16 within the appliance
which are enabled with the software architecture (by issuing
a “find Nodes” command). Enabled components respond that
they are, indeed, enabled (by issuing a broadcasted “publish
Nodes” command). Then, the client 16 transmits a command
to identity which APIs are located on each enabled node (by
issuing a “find APIs” command). Each enabled node responds
with a bounded message containing its API IDs (by replying
with a “publish APIs” message). Then, the client 16 issues a
command to identify information about each of the APIs
found on each enabled node (by issuing a “get API Info”
command). Each enabled node responds with a bounded mes-
sage (whose purpose and structure are described in FIG. 9)
containing information about the API contained therein (by
replying with a “publish API Info” message). This message
can include type, version, and the number of occurrences (or
instances) of a particular API1d. In cases where the number of
instances of a particular API within a single component 16
exceeds one (meaning there are multiple of the same APIs
installed on a component 16, such as in the case of a multiple-
cavity oven which might use multiple oven control APIs), the
client 16 issues a command to get information on each
instance of an API (by issuing a “get Instance Info” com-
mand). The software architecture 10 responds with the
requested information (by the “publish Instance Info” mes-
sage). Multiples of the same instance are auto-numbered with
a pseudo-API ID by the software architecture.

In addition when a component 16, enabled by the software
architecture 10 and having resident the sub-component of the
software architecture 10 Discovery which is API 1d=3, ini-
tializes it will automatically send out a message announcing
itself (API Id=3, Op Code=2 publishSANode()).

Also, if the user of the software architecture so chooses, the
Discovery sequence of FIG. 6 may be altered by omitting
messages 1 and 2 (op codes 1 & 2 respectively). The approach
is valid in that the client may initiate discovery by issuing an
Op code=3 message, getSAAPI (collection) which will result
in responses from all components enabled by the software
architecture 10 thus obviating the need for messages 1 and 2
in most cases.

It is also contemplated that an abbreviated messaging
sequence could achieve the same results as the aforemen-
tioned discovery sequence. In an abbreviated discovery
sequence, each node issues a message after power-up con-
taining within one message the totality of information which
was described in the aforementioned discovery sequence.
Each node receiving this message would reply back with the
same information about itself giving the node which just

30

40

45

20

powered up the discoverable information from all the nodes
that were already powered up.

This Discovery API protocol mechanism allows a client 16
to locate a logical entity at runtime without prior compile time
programming. Moreover, this mechanism allows the client 16
to determine if expected components are resident or missing.
From this knowledge, the client can configure itself and/or
present the user with the appropriate inferred functionality.

The Low Level API (API ID=5) exposes via the network
14, capability allowing the client to control (actuate) the
output devices which are electrically connected to the con-
taining component 16 and to provide read and/or write access
to the numeric value which represents the current state and
potentially the state history of the electrically connected input
device. Typical examples of outputs are valves, relays, triacs,
solenoids, LEDs, lamps, buzzers, and so on. Typical
examples of inputs are push buttons, switches, sensors (e.g.,
pressure, temperature, and over-temperature), and so on. In
the preferred embodiment, the Low Level API as well as the
Memory-Port API are available only in the ‘Development
State’ of FIG. 3 of the software architecture 10 of the appli-
ance 12. ‘Development State’ can only be entered from the
appliance 12 ‘Idle State’ of the exemplary Appliance state
diagram of FIG. 7. Also in the preferred embodiment, if any
user interface actions are initiated via akeypad, LCD, or other
user interface device of the appliance 12 during ‘Develop-
ment State’, the appliance 12 can revert back to the ‘Idle
State’ of FIG. 7 and setting each output back to its un-actuated
state. The messages for initiating ‘development state’ can be
found in the message definition specification for the Low
Level APIL (See API 5, Op Code 2). This network message is
defined to allow the appliance 12 to enter the development
state. In development state, a special API is enabled and
exposed to the network 14 which allows the client 16 to
control the electronic outputs of the appliance 12 directly. In
development state, production oriented business rules such as
validation are bypassed giving the client 16 complete control
of' the electronic sub-system.

The Low Level API can be used to implement non-standard
operation of the appliance in that the appliance can be oper-
ated in a manner other than in accordance with one of the
predetermined operating cycles implemented by the appli-
ance software operations layer, which typically resides on the
main controller. In this way, the Low Level API can be
thought of as enabling additional cycles of operation. Some
examples of additional cycles of operation include: a demon-
stration cycle; a development cycle; an error detection cycle;
adiagnostic cycle; a cycle that reduces the time of at least one
timed step of one of the predetermined cycles of operation; a
cycle that bypasses at least one operational step of one of the
predetermined cycles of operation; a cycle that substitutes a
timed step for a step that responds to an event of one of the
predetermined cycles of operation; and a cycle that exposes
the low level API to the network

The Key Press API (API 6) allows the client 16 to press
virtual keys. This provides an equal method by which to
exercise and test the software without mechanical or human
actuation of the physical key pad.

One note on a convention used in this application. The
word “extends” refers to the ability of one API to build on the
functionality of a baser-level API. The extends keyword
means: When API x ‘EXTENDS” API y, then API x=API
x+API y. This notation simplifies the task of record keeping
and API documentation. In other words, API x also includes
those functions specified in API y. If API x and API y each
specify a function with the same Op Code, the implementa-
tion of API x implementation can take precedence.

US 9,124,444 B2

21

Exemplary application packets for the payload portion of
the packet structure for the internal communications network
of the household appliance follow. The application packets
are grouped according to API.

22

tions, the ACK is generally assumed and is not continuously
repeated or documented. Enumeration values for the reason
code of the above application packet are shown in the table
below.

Enumeration
Value for

Reason Code Reason Code Name

Programming Notes

0 READY*

1 BUSY*

2 REJECTED*

3 ACK_ EVENT

4 UNSUPPORTED

5 UNSUP_OP_CODE

6 UNSUP_UNAVAILABLE

7 UNSUP__INVALID_ PARAM

8 UNSUP_OUT_OF_MEMORY

9 UNSUP_DOOR_OPEN

10

11

200-255

UNSUP_BOUND_ CMD__IN-
COMPLETE

UNSUP_CANNOT__PAUSE__NOW

Application Specific

The command was successfully executed
and the SA is ready to accept another
command.

The SA module is currently busy executing
a command. Usually just an internal state.
The command sent to the SA was rejected,
because there was another command still in
process.

The command was not executed because
the SA is currently waiting for an
acknowledgement.

The command was unsupported for some
reason and did not execute. (Ready for
next command)

The command was unsupported and did
not execute due to an invalid op code.
(Ready for next command)

The command was unsupported and did
not execute because it is currently
unavailable in this state. (Ready)

The command was unsupported and did
not execute due to an invalid or out of
bounds parameter. (Ready)

The command was unsupported and did
not execute because the dynamic heap

is out of memory. (Ready)

The command was unsupported and did
not execute because the appliance door was
open. (Ready)

The bounded command was not fully
received before a specified timeout, so it
was not fully executed. (Ready)

Unable to pause due to state of appliance
process.

Application Developers may use these
return values in their applications. It is up
to the Developer to document the
Application Specific reason codes.

*0-3 are reserved for use by the software architecture 10

Core API: API ID=1 (Type 3, Version 1).

The following application packet represents a directed
message from the software architecture 10 to a client for
publishing acknowledgement (Publish Acknowledgement).
This message is sent by the software architecture 10 to the
sender of a previous message. It contains an enumerated value
representing the results of the previous command processed
by the software architecture 10. Generally, the receipt of the
acknowledgment indicates that the sender can initiate the next
message.

APIL
D Op Code Byte 3 Byte4 Byte5
1 1: publish Acknowledgement Reasoncode API OpCode

Note that the API and op code of the previously received
command (the one that is being acknowledged) is contained
within byte 4 and 5 of the payload. This provides the receiver
of the acknowledgment (the component 16 which sent the
original command) certainty as to which previously transmit-
ted command is being acknowledged. (The previously trans-
mitted command having the unique identifier of API Id and
Op Code.) It should be noted that in the drawings and descrip-

45

50

55

60

65

The following application packet represents a broadcast
message from the software architecture 10 to a client (16 or
22) for publishing heartbeat (Publish Heartbeat). This mes-
sage is periodically sent by the software architecture 10. This
allows nodes, which have registered for events, to maintain
confidence in the event sources. In other words, heartbeat
insures connection integrity. Alternatively, the client (16 or
22) may determine that each or some event(s) sent by the
software architecture 10 should receive an acknowledgement
sent by the client back to the software architecture 10 before
the software architecture 10 deems the transaction associated
with the generation and transmission of the event to be com-
plete. Ifa particular event has been created with the ‘acknowl-
edgment’ classifier according to the message specification of
API 2, Op Code=1, 2, 12, or 13, the software architecture 10
will define the end of the transaction associated with the
generation and transmission of the event to be complete when
an acknowledgment message is received according to the
message specified by API Id 1 and Op Code 1.

Publish Heartbeat will not be sent until after the software
architecture 10 receives a command. This can be used to
prevent a Traffic Storm condition during power-up. (Traffic
Storm refers to a misoperation within the software of a client
16 or 22 where the software components therein would not be

US 9,124,444 B2

23

able to accurately process the plurality of messages generated
as aresult of a power-up condition.) Publish Heartbeat will be
suspended after a Reset SA message, which is described
below with respect to the Core DAQ API and Op Code 8, is
received, but will resume after the next subsequent command.
This is a feedback message.

24

The following application packet represents a directed
message from a client to the software architecture 10 for
reading EE memory (Read EE). It is sent to the software
architecture 10 and results in a “Publish EE Data” response
(Op Code=8), which is shown below and contains the values
specified in the Read EE packet, Bytes 3-7 below.

API
m Op Code Byte 3-Byte F 10 API Byte Byte Byte Byte Byte Byte 8-
D Op Code 3 4 5 6 7 Byte F
1 2: heartbeat
. o . 1 6: Address Address Address Size Size
The following application packet represents a directed readEE Hi- Mid- Low- MSB LSB
message from a client to the software architecture 10 for 15 b Bt s
setting heartbeat period (Set Heartbeat Period), which is set- yte e ye
ting a frequency at which the heartbeat message is sent by the
software architecture 10. Exemplary frequencies range from . L .
0 seconds (off) to 3600 seconds (1 hr). The following application pagket represents a (.11rected
message from the software architecture 10 to a client for
20 publishing memory data (Publish Memory Data) and is a
API response to Read Memory.
D Op Code Byte 3 Byte 4 Byte 5-Byte F
1 3: setHeartbeatPeriod Sec Sec LSB
MSB API Byte Byte Byte Byte Byte Byte 8-
25 ID Op Code 3 4 5 6 n ByteF
. .. 1 4: dat dat: dat dat:
The following application packet represents a brpadcast publishMemoryData MaSaB ate - daa LZ;
message from the software architecture 10 to a client for
publishing the heartbeat period (Publish Heartbeat Period).
This message is a response to Set Heartbeat Period. It is 30 The following application packet represents a directed
necessary so that if a second client changes the heartbeat megsage from the software architecture 10 to a client for
period, the first client will be notified. Clients who require publishing EE memory data (Publish EE Data) and is a
non-changing heartbeat periods should use the DAQ API to response to Read EE.
set up an event with a constant broadcast operator, See DAQ
API1d=2, Op Code 1, Byte 9=4, 5, or 6 (see change operator 35
table)' API Byte Byte Byte Byte Byte ByteS8-
D Op Code 3 4 5 6 n Byte F
AP 1 8: data data data data
D Op Code Byte3 Byte4 DByleSByteF 4 publishEEData MSB LSB
1 16: newHeartbeatPeriod Sec Sec LSB
MSB The following application packet represents a directed
message from a client to the software architecture 10 for
The following application packet represents a directed _ sendingevents (Send Events). The message instructs the soft-
message from a client to the software architecture 10 for 45 ware ar.chltectu.re .10 to send specified events regardless of
reading memory, particularly the RAM (Read Memory). It is event trigger criteria.
sent to the software architecture 10 and results in a “Publish Note: Event Id is used synonymously with Op Code. Event
Mzmory Data”™ relzsponse, Wflinfih 13 SSOWH 1’36170WI§01113 Codek4) 1d is a more descriptive term for Op Code when describing an
and contains values specified 1n Bytes 3-7 of the packet oh i
below 5o Event which is pa.rt of an API. .
Note: the notation used below is repeated through out the
document and is described here only. If Byte 3 contains the
API Byte Byte Byte Byte Byte Byte 8- reserved value OXFF, then the software architecture 10 inter-
ID OpCode 3 4 5 6 7 ByteF prets Byte 3 to mean all API Ids. Otherwise, Byte 3 specifies
55 - o .
1 S, nddress Address Address Size Size a particular API 1d. L1k§W1se, If Byte 4 contains OxFF, the
readMemory Hi- Mid- Low- MSB LSB software architecture 10 interprets Byte 4 to mean all Events
byte Byte Byte for the API or APIs specified in Byte 3. Otherwise, Byte 4
contains a single Event Id. Bytes 5 thorugh Byte n contain a
single Event Id.
API Byte 8-
D Op Code Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte F
1 7: send Event(s) APIid Eventld# Eventld# Eventld# Eventld#
(OxFF = all) (OxFF =all)

US 9,124,444 B2

25

The following application packet represents a broadcast
message from the software architecture 10 to a client for
publishing events (Publish Event) and is a response to the
above Send Events message. Alternatively, if the DAQ
Engine is being used, this message is sent when the event
trigger criteria is satisfied. Below, API Id and Op Code are
notated as ‘client defined’. This refers to the assignment made
of API ID and Op Code by the createEvent commands (sent
by the Client) of DAQ API (API 1d=2) specifically in Bytes 7
and 8 of Op Code 1 & 2 and Bytes 3 and 4 of Op Code 12 &
13

API Byte Byte Byte Byte Byte Byte 8-

D Op Code 3 4 5 6 7 Byte F
client client data data data data
defined defined MSB LSB

Core DAQ API: API ID=2 (Type 3, Version 1).

The following application packet represents a directed
message from a client to the software architecture 10 for
creating a numeric event (Create Numeric Event). The mes-
sage, identified by API Id of 2 and Op Code of 1 or 2 allows
the client to create and configure feedback variables [NVO-
Event structures of FIG. 33]. Byte 7 and 8 are used to assign
the identifier (API Id and Op Code) which will be used to

10

15

20

25

26

Event operators associated with Byte 9 of the above appli-
cation packet are discussed in further detail following this
section of exemplary application packets and are shown in the
table that denotes event operators available when creating a
numeric-based event. Additionally, byte C corresponds fur-
ther classification resulting in either acknowledged or unac-
knowleged events (discussed later). See FIG. 29 for an
example of the operation of an acknowledged event.

The following application packet represents a directed
message from a client to the software architecture 10 for
creating a byte event (Create Byte Event). The messages
definitions, identified by AP1 1d=2 and Op Code=1 or 2 allows
the client to create and configure feedback variables (events).
The message specification for Op Code 2 is similar in intent,
but has different implementation details that provide useful-
ness for certain application use cases. API Id 2 with Op Code
2 differs in functionality from API 1 Op Code 1 in that
depending on the value of Byte A, either only 1 byte within
the range specified by Bytes 3-5 and Byte 6 or all the bytes
will be evaluated based on Byte 9°s change operator and Byte
B’s change value. Whereas in the case of Op Code 1, the
specified bytes were evaluated as a single numeric. In the case
of Op Code 2, each byte or a single byte, according to the
value specified in Byte A, will be evaluated independently
according to the change operator specified in Byte 9 and the
change value specified in Byte B.

API
D Op Code Byte3 Byte4 DByte5 Byte6 Byte7 Byte8 Byte 9 Byte A ByteB Byte C
2 2: address address address size API Event Change byte index Change ACK’d Event
createByteEvent Hi- Mid- Low- Id Id Operator Val
Byte Byte Byte
0-255 1=ACKd
OxFF = all 0 =unACK’d
40

populate fields in the publish event message (API Id 1) when
the event conditions are such that an event message is gener-
ated. Generated event messages are of the form found in the
preceding description of the Core API where the message
packet is labeled as ‘Publish Event’. The identifiers API Id
and Op Code located in bytes 1 and 2 respectively of the
Publish Event message. The values found in these bytes can
be assigned through the messages defined for the DAQ API,
Op Codes 1 and 2 below. Bytes 3-5 contain the address in the
memory of the software operating environment which will be
evaluated for the event condition represented by Byte 9 which
is an enumeration of evaluation rules and Bytes A and B
which are arguments to the evaluation rules. Byte 6 specifies
the number of contiguous bytes which should be evaluated as
a single numeric value with respect to Bytes 9, A, and B

45

50

55

Event operators associated with Byte 8 of the above appli-
cation packet are discussed in further detail following this
section of exemplary application packets and are shown in the
table that denotes event operators available when creating a
byte-based event. Additionally, byte C corresponds to further
classification resulting in either acknowledged or unacknow-
leged events (discussed later.) See FIG. 29 for an example of
the operation of an acknowledged event.

The following application packet represents a directed
message from a client to the software architecture 10 for
clearing event(s) (Clear Event(s)). The Clearing Events mes-
sage allows the client to clear the event definitions previously
created with either of the create event Op Codes (1 or 2, as
shown above). The client can send multiple Clear Event com-
mands to the software architecture 10 using the MMP flag if
synchronization is needed across multiple commands.

API
ID Op Code Byte3 Byte4 DByte5 Byte6 Byte7 Byte8 Byte 9 Byte A Byte B Byte C
2 1: address address address size API Event Change Change Change ACK’d Event
createNumericEvent Hi- Mid- Low- 1,2,4 Id Id Operator ValMSB Val LSB
Byte Byte Byte
1=ACKd

0 =unACK’d

US 9,124,444 B2

27 28
API Byte 8-
ID Op Code Byte 3 Byte 4 Byte 5 Byte 6 Byte n Byte F
2 3:clearEvent APIId Eventld# Eventld# Eventld# Eventld#
(OXFF =all) (0OxFF =all)

The following application packet represents a broadcast
message from the software architecture 10 to a client for API Byte Byte Byte Byte Byte
publishing events cleared (Publish Events Cleared) and is a © D Op Code 3 4 5 6 n
response to Clear Events. The message notifies the clients of 5 10: API OpCode OpCode OpCode OpCode
the software architecture 10 when Op Codes or APIs are publishExternalon Id
removed from the existing the software architecture node
interface.

API
ID Op Code Byte 3 Byte 4 Byte 5 Byte 6 Byte n Byte 8-Byte F
2 4: publishEventsCleared APIId Eventld# Eventld# Eventld# Eventld#
(OxFF =all) (OxFF =all)

The following application packet represents a directed The following application packet represents a directed
message from a client to .the software architecture 10 for ,5 Message from a client to the software architecture 10 for
resetting the software architecture 10 (Reset SA). The Reset turning off external notification for a specified event (Set
SA command instructs the software architecture 10 to re- . .
R s . External Off). The command instructs the software architec-
initialize as if it had just powered up. i 3

ture to not externally notify clients of the event.
30
API
b} Op Code API Byte Byte Byte Byte Byte
D Op Code 3 4 5 6 n
2 8: resetSA
350 11: API OpCode OpCode OpCode OpCode
setExternalEventOff — Id

The following application packet represents a broadcast
message from the software architecture 10 to notify that the
software architecture 10 has been reset (Publish SA Reset) ,~ The following application packet represents a broadcast
and is a response to Reset SA. message from the software architecture 10 to notify that

external notification of the specified event has been turned off
API (Publish External Off) and is a response to Set External Off.
D Op Code
45
2 9: publishSAReset
API Byte Byte Byte Byte Byte
. o . D Op Code 3 4 5 6 n

The following application packet represents a directed
message from a client Fo the.: software archltecture 10 for 50 5 10: API OpCode OpCode OpCode OpCode
turning on external notification for a specified event (Set blishExtermalOff 1
External On). The command instructs the software architec- pubisiEstema
ture to externally notify clients of the event. See FIG. 28 for an
example of the usage of this command. .

P g s Core DAQ API: API ID=2 (Type 4, Version 1—Extends
Type 3, Version 1).

API Byte Byte Byte Byte Byte The following application packet represents a directed

g app p P
- Op Code > ¢ > 6 n message from a client to the software architecture 10 for
2 10: APL OpCode OpCode OpCode OpCode getting event data (Get Event Data). Get Event Data instructs
setExternalEventOn Id 60 . . .

the software architecture 10 to send definition(s) of specified

) o events. The definition is a mirror image of the data sent in the

The following application packet represents a brgadcast Create Event Op Code messages, which are shown above as
message from the software architecture 10 to notify that Op Codes 1 or 2 for the Core DAO APL The softw Hi
external notification of the specified event has been turned on 65 p Codes 1 or 2 for the Core DAQ - Lhe soltware archi-

(Publish External On) and is a response to Set External On.
See FIG. 28 for an example of the result of this command.

tecture 10 will respond with a collection of Publish Event
Data messages, which are shown below.

US 9,124,444 B2

29 30
API Byte 8-
ID Op Code Byte 3 Byte 4 Byte 5 Byte 6 Byte n Byte F
2 5: getEventData APIId Eventld# Eventld# Eventld# Eventld#
(OXFF =all) OxFF =all)
The following application packet represents a directed
message from the software architecture 10 to a client for
publishing numeric event data (Publish Numeric Event Data), 10
and is a response to Get Event Data. Each event definition is
reported in a separate internal network message and is gov-
erned by snapshot rules associated with the MMP flag of 28 of
FIG. 4. The event definition contains the information speci-
fied about the event in Create Numeric Event.
API
ID Op Code Byte3 Byte4 Byte5 Byte6 Byte7 Byte 8 Byte 9 Byte A Byte B-Byte
2 6: ad- ad- size = API Event Change Change Change
publishNumericEventData dress dress 1,2,4 Id Id Operator Val MSB Val LSB
MSB LSB
Event operators associated with Byte 8 of the above appli-
cation packet are discussed in further detail following this 25
section of exemplary application packets and are shown in the
table that denotes event operators available when creating a
numeric-based event.
The following application packet represents a directed
message from the software architecture 10 to a client for 30
publishing byte event data (Publish Byte Event Data) and is
response to Get Event Data. Each event definition is reported
in a separate internal network message and will be governed
by the snapshot rules associate with the MMP flag of 28 of
FIG. 4. The event definition contains the information speci-
fied about the event in Creation Byte Event.
API
ID Op Code Byte3 Byte4 Byte5 Byte6 Byte7 Byte 8 Byte 9 Byte A Byte B-Byte F
2 7: address address size API Event Change byte index Change
publishByteEventData MSB LSB Id Id Operator 0-255 Val
Event operators associated with Byte 8 of the above appli- 45 work nodes where Node A successfully creates a Remote
cation packet are discussed in further detail following this ~ Numeric Event on Node B. And where Node C attempts the
section of exemplary application packets and are shown in the same, but through the interaction with Node B, is able to
table that denotes event operators available when creating a accomplishthe intent of the request without duplication of the
byte-based event. Identifier (APl Id and OpCode). This is accomplished
; L. . because Node C is able to query Node B for the address in
The following application packet represents a directed . memory of the initial Identifier so that an alternative (non-
message from a client to the software architecture 10 for duplicated) Identifier may be selected. The alternative iden-
creating a remote numeric event (Create Remote Numeric tifier is then used to create the Remote Numeric Event by
Event). The message allows the client or another module in sending (see message 8 in FIG. 27) a new message to Node B
the embedded system to configure feedback variables asso- with the original memory address and the alternative Identi-
ciated with an existing API and Op Code using an embedded fier.
API
ID Op Code Byte3 Byte4 Byte 5 Byte 6 Byte 7 Byte 8
2 12:createNumRemoteEvent APIId OpCode Change Operator ChangeVal ChangeVal ACK’d Event
MSB LSB
1=ACKd
0 =unACK'd

variable map. Although the number can be 4 bytes, the change
value is limited to 2 bytes. FIG. 26B illustrates the embedded
variable map. FI1G. 27 defines the interaction between 3 net-

65

FIG. 268 illustrates the embedded variable map. FIG. 27
defines the interaction between 3 network nodes where Node
A successfully creates a Remote Numeric Event on Node B.

US 9,124,444 B2

31 32
And where Node C attempts the same, but through the inter- Core Discovery API: API ID=3 (Type 3, Version 1).
action with Node B, is able to accomplish the intent of the Referring to FIG. 6, the following application packet rep-
request without duplication of the Identifier (API Id and resents a broadcast message from a client to find nodes of the

OpCode). This is accomplished because Node C is able to software architecture 10 (Find Node(s)). This broadcast mes-
query Node B for the address in memory of the initial Iden- 5 sage enables a node to locate other nodes of the software
tifier so that an alternative (non-duplicated) Identifier may be architecture 10.

selected. The alternative identifier is then used to create the
Remote Numeric Event by sending (see message 8 in FIG.

27) a new message to Node B with the original memory AP
. . D Op Cod: Byte 3-Byte F
address and the alternative Identifier. 10 P o yie 3-Byte
The following application packet represents a directed 3 1: findNodes

message from a client to the software architecture 10 for

creating a remote byte event (Create Remote Byte Event). The following application packet represents a broadcast

The message allows the client or another module in the message (Publish Node) from the software architecture 10
embedded system to Conﬁgure feedback variables associated 15 allowing it to pubhsh its presence to other Components par-
with an existing API and Op Code using an embedded vari- ticipating on 14. This message is sent when a node of the
able map. software architecture 10 powers up or is re-set or is sent as a
API
ID Op Code Byte 3 Byte4 Byte 5 Byte 6 Byte 7 Byte 8
2 13: createByteRemoteEvent APIId OpCode Change Byte Index Change Val ~ ACK’d Event
Operator
0-255 1=ACKd
0 =unACK’d

FIG. 268 illustrates the embedded variable map. FIG. 27 response to Find Nodes. Additionally, this message can be
defines the interaction between 3 network nodes where Node sent when the node of the software architecture 10 through a
A successfully creates a Remote Byte Event on Node B. And secondary Discovery process adds (to itself) an API or adds

: ;. 30 Op Codes to an existing API. Publish Node is not sent when
where Node C attempts the same, but through the interaction a client dynamically adds an API or Op Code {o the software

with Node B, is able to accomplish the intent of the request architecture 10 (via DAQ O
. 1 . p 1,2,12,13). The payload of the
without duplication of the Identifier (AP1 Id and OpCode). feedback message contains a firewall password, which is to be

This is accomplished because Node C is able to query Node B used by the firewall security feature of the software architec-
for the address in memory of the initial Identifier so that an ture 10 (see FIG. 31 for an example of this feature). This
alternative (non-duplicated) Identifier may be selected. The ~~ allows the sender of the message to become a ‘trusted’ node
alternative identifier is then used to create the Remote Byte on network 14.

Event by sending (see message 8 in FIG. 27) a new message
to Node B with the original memory address and the alterna-

35

: : API
tive Identifier. 40 ID Op Code Byte 3 Byte 4
The following application packet represents a directed
message from a client to the software architecture 10 for 3 2: publishSANode Firewall Firewall
getting remote variable data from an embedded variable map Password MSB Password LSB

(Get Remote Variable Data). The message instructs the soft-
ware architecture to publish information concerning the data The following application packet represents a message
that exists in the embedded variable map. See FIG. 27 for an which can be either directed or broadcasts from a client to the
example of use of this command. software architecture 10 for getting API(s) (Get APIs) of the
software architecture 10. This directed message allows the
client to discover the APIs that are supported by a specific

API node of the software architecture 10. API Id must be unique
ID Op Code Byte 3 Byte4 Byte5 Byten 50 within an appliance

2 14: getRemoteVarData APIId OpCode OpCode OpCode

The following application packet represents a directed ?]I;I Op Code Byte 3-Byte F
message from the software architecture 10 to a client for 55
publishing remote variable data (Publish Remote Variable 3 3: getAPls
Data), and is a response to Get Remote Variable Data. It
reports data from the embedded variable map, such as the The following application packet represents a broadcast
API, op code, size, and address. message from the software architecture 10 to a client for

API

ID Op Code Byte 3 Byte 4 Byte 5 Byte6 Byte7 Byte8

2 14: publishRemoteVarData Address Address Address Size APIId OpCode
Hi-Byte Mid-Byte Low-Byte

US 9,124,444 B2

33

publishing API(s) (Publish API(s)) of the software architec-
ture 10. This message is a response to Get API(s) and is a
directed message that allows the client to discover the APIs
that are supported by the sending node of the software archi-
tecture 10.

34

find the Instance Ids that belong to the API. The Descr Char
1—Descr Char n is an optional feature that can be helpful to
developers. Descriptive text can be used to annotate API Id.
For example, “upper’ or ‘lower’ could be used for the two
cavities of a double oven.

The following application packet represents a directed
message from a client to the software architecture 10 for

API Byte 7- Lo . . .
D Op Code Byte3 Byted ByteS Byten Byytee F gf:mng instance 1nf0rmat101} (Get .Instance Info). This
directed message allows the client to discover the Instance Ids
3 4publishAPls API# API# API# APIn 19" for the APIs that report more than one Instance of an API. The
first instance of any AP uses API Id as its Instance Id. If there
The following application packet represents a message are multiple Instances of an API Id on the same addressable
which can be directed or broadcast from a client to the soft- node, subsequent instances are assigned an Instance Id
ware architecture 10 for getting API information (Get API |, dynamically. These dynamically assigned Ids can be discov-
Info). This directed message allows the client to discover ered by sending the Get Instance Info message. The value of
Version and Type information about the specified API(s). the Instance Id should be used in place of API Id when there
are multiple instances of an API on a physical network node.
API Byte Byte Byte Byte Byte7- 20
D OpCode 3 4 > 1 ByteF API Byte Byte Byte Byte Byte7-
3 s APT# APl APl API D Op Code 3 4 53 n ByleF
getAPIInfo (OXFF = all) # # n 3 7, API# API API API
getInstancelnfo (OXFF = all) # # n
The following application packet represents a directed 25
message from the software architecture 10 to a client for The following application packet represents a broadcast
publishing API information .(Pu.bhsh API Info) and is a message from the software architecture 10 to a client for
response to Get API Info. This directed message allows the blishing i nf ion (Publish I Inf d
client to discover Version and Type information about the Pu ishing instance information (Pu 1s. n.stance nfo) an
specified API(s). There is one message per AP, and the 30 is a response to Get Instance Info. This directed message
messages are bounded using the MMP flag of FIG. 4. allows the client to discover the Instance Ids. The first
API
ID Op Code Byte3 Byte4 Byte5 Byte6 Byte7 Byte 8 Byte 9 Byte A Byte B-Byte T
3 6:publishAPIInfo API Type Type Version Version Number DescrCharl Descr Char2 Descr Charn
Id MSB LSB MSB LSB Instances
Bytes 4 and 5 represent an API’s Type which can be used 40 instance of any API uses API Id as its Instance Id. If there are
Asan indication of a specific sub-class%ﬁcatlon of e.ln.API. The multiple Instances of an APT1d on the same addressable node,
value of Type can be used to determine compatibility con- b . b ioned an I dd .
cerns between sub-components (APIs). Byte 6 and 7 repre- subsequent instances will be assigned an Instance Id dynami-
sent an API (of a particular Type)’s Version. This value can be cally. These dynamically assigned Ids are communicated via
used to indicate bug fixes or changes to functionality. As with 45 the Publish API Info message described above. For purposes
Type, t enal?les a runtime compatibility .check, Whlch can of uniformity, Publish API Info is sent for the first instance
inform the client if the versions are compatible. Alternatively,) i
Bytes 4-7 can be used in conjunction with Byte 3 to form a 5 (i.e., where API Id=Instance Id). There will be one message
byte class identifier where class refers to a class definition for Instance of API, which is bounded using the MMP flag.
within a class library (whom one of typical competence with 50 The value of Instance Id should be used in place of API Id
the state of the art would understand). Using the alternate o)
approach, Byte 3 (API Id) is a runtime object handle and when there are multiple instances of an API on a physical
Bytes 3-7 numerically concatenated form the class id. network node.
API
D Op Code Byte3 Byte4 Byte5 Byte6 Byte 7 Byte 8 Byte 9 Byte A Byte n
8: APl Instance Type' Type Version? Version Descr® Char1 Descr Char 2 Descr Char n
publishInstanceInfo Id Id MSB LSB MSB LSB

! Allows for APIs to be sub-classed or specialized. For example, API Id may refer to a washing machine API and Type may specify a particular washer model.
2Enables version control (i.e. bug fixes or changes to functionality). Enables a runtime compatibility check, which can inform client if the versions are compatible.
3 Allows client to associate Instance Id with its physical function. For example, “upper’ or *lower” could be used for the two cavities of a double oven.

The Number Instances associated with Byte 8 signifies to
the client than an API has multiple instances. The client can
follow up with Get Instance Info, which is described below, to

65

Preferably, the Descr Char 1—Descr Char n allows the
client to associate an Instance Id with its physical function.
For example, “upper’ or ‘lower’ could be used for the two

US 9,124,444 B2

35

cavities of a double oven. However, the user of the software
architecture 10 may use Descr Char 1—Descr Char n for any
useful purpose.

Core Debug API: API ID=4 (Type 1, Version 1).

The following application packet represents a broadcast

36

-continued

Machine State Enumeration

. . ause 7
message from the software architecture 10 to a client for feserve d %
publishing saturation (Publish Saturation). Saturation hap-
pens when the supporting layers of the internal network 14 are reserved ?
unable to deliver the data that the software architecture 10 has reserved 10
put into the outbound queue of WIDE 14A. The software 10 appliance specific 11-255
architecture 10 has no queue; if the WIDE 14A cannot service
the outbound data, then the software architecture 10 sends out
Publish Saturation. The following application packet represents a directed
message from a client to the software architecture 10 for
15 toggling the household appliance 12 software operating envi-
APl ronment 16 governing state of FIG. 7 between Development
D Op Code Byte 3-Byte F and Idle State. Note Development State not shown on FIG. 7,
4 1: publishSaturation but one with ordinary skill in the art can contemplate a Devel-
opment state which can only be entered from Idle and when
. L . 20 axi
The following application packet represents a directed ~ eXited goes back to Idle.
message from a client to the software architecture 10 for
setting a register for saturation (Register for Saturation). The e
client sends this message to a software architecture node
. . ° D Op Cod Byte 3 Byte 4-Byte F
which enables the Saturation message. Only the node that 25 P bt yie & Byee
enables saturation can disable saturation. 5 2: setDevelopmentState 1=on
2 =off
API .
D Op Code Byte 3 Byte 4-Byte F Core Key Press API: API ID=6 (Type 1, Version 1).
4 - Saturation On or OfF L—on 30 The following application packet represents a directed
off message from a client to the software architecture 10 for
pressing a key (Key Press). This directed message allows the
Low Level APL: AP ID=5 (Type 1, Version 1) client to send virtual key presses. Key indexes are not discov-
The following application packet represents a broadcast 35 erable due to coding te.chmques used in the embedded pro-
message from the software architecture 10 for publishing cessor; therefore, key indexes may be extracted from the
state (Publish State). This message sent as a result of a source .code files manually or through other automated
changed internal state of the machine, resulting from normal mechanisms.
cycle progressions, user interactions, Op Code 2 below, or
other messages received via network 14. 40
API
1D Op Code Byte 3 Byte 4-Byte F
API 6 1: pressKey key index
D Op Code Byte 3 Byte 4-Byte F
5 1: publishStat tat 45 . .
L St e The following application packet represents a broadcast
message from the software architecture 10 to a client for
Exerpplary machine state enume.ration values are pre- publishing key press (Publish Key Press).
sented in the following table. According to one embodiment
of the invention, the running state is included. However, in 0
some cases, the running state is somewhat ambiguous and API
additional phase variables must be exposed so that proper D Op Code Byte 3 Byte 4-Byte F
client s.1de business lgglc can be ‘written. .In an alternative P >: publishKeyPress ey index
embodiment, the running state is eliminated in favor ofamore
granular and definitive state machine where each phase of 55
each state is documented properly. In this embodiment, suf- Exemplary key press index enumeration values are pre-
ficient ad.dress space exists in the byte for the additional sented in the following table.
enumerations.
60 Key Press Index Enumeration
Machine State Enumeration
start 1
idle 1 cancel 2
running 2 pause 3
programming 3 reserved 4-25
fault 4 appliance 26-255
development 5 65 specific
end of cycle 6

US 9,124,444 B2

37

Memory/Port API: API ID=7 (Type 3, Version 1).

The following application packet represents a directed
message from a client to the software architecture 10 for
writing memory (Write Memory). The Memory/Port port API
is enabled via the Development State of FIG. 3 and the asso- 5
ciated interaction is similar to the previously described asso-
ciation between Development State of FIG. 3 and the Low
Level API (API ID=7).

This directed message allows the client to write to a speci-
fied RAM location. The write to the specified RAM location
is limited to a single packet. In the current embodiment, this
would be 13 bytes shown in 28 A of 28. MMP (of 28)=1 is not
valid for this message.

10

38

A note on the event operators discussed in the DAQ API
section above. Byte 9 of the Create Event Numeric and Byte
message (DAQ APl opcodes 1 &2) and Byte 5 of CreateNum-
RemoteEvent and CreateByteRemoteEvent (DAQ API op
codes 12 & 13) are the event change operator shown in the
NVOEventStructure of FIG. 33. Operators are instructions
which describe to the software architecture 10 the mathemati-
cal condition at which the software architecture 10 should
generate an event message. The table below describes
examples of event operators. The arguments for event opera-
tors are dependant on the type of event being created (nu-
meric-based or byte-based which are op codes 1 and 2,
respectively).

API
ID Op Code Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte n
7 1: writeMemory Address Address Address databyte databyte databyte
Hi-Byte Mid-Byte Low-Byte

The following application packet represents a directed
message from a client to the software architecture 10 for
writing EE memory (Write EE). The write to a specified EE
location is limited to a single packet. In the current embodi-
ment, this would be 13 bytes shown in 28A of 28. MMP (of
28)=1 is not valid for this message.

The Memory Port

30
API
D

Byte Byte Byte
Op Code 3 4 5

Byte Byte Byte
6 7 n

7 2:
writeEE

Address
Hi-
Byte

Address Address data
Mid- Low- byte
Byte Byte

data
byte

data
byte
35

Poll Variable API: API ID=10 (Type 1, Version 1).

Referring to FIG. 5, the following application packet rep-
resents a directed message from a client to the software archi-
tecture 10 for reading poll variables (Read Poll Variable(s)).
This message instructs the software architecture 10 to send a
Publish Poll Variable message, which is shown below, for
poll-only variables. Poll variables can be hard-coded by a
developer for a specific application and can be used if RAM/
ROM resources do not allow the use of the DAQ APL.

40

45

API
D

Byte 6-

Op Code Byte 3 Byte4 Byte5 ByteF

50

10 1:readPollVariable(s) EventId1

(OXFF = all)

Event
Idn

Event
Id2

The following application packet represents a directed
message from the software architecture 10 to a client for
publishing poll variables (Publish Poll Variable) and is a
response to Read Poll Variable(s). There is one message per
poll variable index as specified in the initiating Read Poll
Variable message.

Event operators are part of the DAQ API which has two
variations: basic (Type 1) and an extended (Type 2). Note the
fifth column in the table which denotes the availability of each
Event Operator for the plurality of revisions (4) of the DAQ
API. Note that Types 1 & 2 are depricated and the preferred
embodiments are the Basic Type 3 or the Extended Type 4
which is inclusive of Type 3 functionality.

The following table denotes the event operators available
when creating a numeric-based event (API ID 2, Op Code 1
and 12):

Oper- DAQAPI
atorId Argl Arg 2 Type
Name (Byte 8) (Byte 9) (Byte A) Availability
On Change 0 — — 1,2,3,4
Deadband 1 Deadband Deadband 2,3,4
Val (MSB) Val (LSB)
Check Value == 2 Compare Compare Val 2,3,4
Val (MSB) (LSB)
Boundary <= | => 3 Compare Compare Val 2,3,4
Val (MSB) (LSB)
25 msec increments 4 — time = val * 1,2,3,4
25 ms
Seconds 5 — time = val 1,2,3,4
(sec)
Minutes 6 — time = val 1,2,3,4
(min)
Reserved 7 — — —
BIND 8 APIId: Event Id Unavailable
DAQ=2 at this
time.

The following table denotes the event operators available
when creating a byte-based event (API ID 2, Op Code 2 and
13):

API Byte 9-
ID Op Code Byte3 Byte4 Byte5 Byte6 Byte7 Byten ByteF
10 Event ID data data data data data

n: (publishPollVariable) ~ MSB LSB

US 9,124,444 B2

39
Oper- DAQ API
atorld Argl Arg 2 Type
Name (Byte 8) (Byte 9) (Byte A) Availability
On Change 0 Offset (1 - 1,2,3,4
size)
Deadband 1 Offset (1 - Deadband 2,3,4
size) Val
Check Value == 2 Offset (1- Compare Val 2,3,4
size)
Boundary < or > 3 Offset (1- Compare Val 2,3,4
size)
25 msec increments 4 — time = val * 1,2,3,4
25 ms
Seconds 5 — time = val 1,2,3,4
(sec)
Minutes 6 — time = val 1,2,3,4
(min)
Bit Mask 7 offset mask 1,2,3,4
BIND 8 APIId: Event Id Unavailable
DAQ=2 at this
time.

The BIND operator allows the client 16 to create multiple
memory events from a single event trigger. In other words,
once an Event ID has been assigned, subsequent events can be
created which will automatically be sent when the original
master event is triggered.

When a byte based event (op code=3) is set up with the On
Change operator, a value of 255 in byte 9 will instruct the
software architecture 10 to do a change detect for all bytes in
the range specified by the address and size arguments.

The Bit Mask operator allows the ability to watch for bit
transitions within a byte. The mask value should be set such
that bit==1 is a ‘care about’ and bit==0is a ‘don’t care’. When
set to ‘don’t care’ a value transition at that bit location will not
result in an event generated.

The software architecture 10 does not provide an explicit
solution for time synchronization, but does provide an
enabling mechanism. The capability of the remote client 16,
22 to create an event that is periodically broadcast allows the
remote client 16, 22 to maintain a time of day clock which is
synchronized with the appliance. Since the software architec-
ture 10 may not explicitly expose a time of day clock AP, the
client 16, 22 can have the address in memory where time of
day is stored.

The software architecture 10 core has several design con-
siderations which can be considered and contemplated to
create alternative embodiments of the invention described
herein.

The following items can be considered when determining
alternative embodiments of the core implementation of the
software architecture 10:

Message Architecture

Payload Structure or Message Size

Multi-Payload Message Integrity Checking

State Aware Messaging

API Versioning—Discovery

Connection Integrity

Traffic (flow) Control and Acknowledged Messages

Inbound Invalid
Inbound Valid
Outbound
Power-up Condition

State Integrity

Key Presses vs. Logical API

Multi-Node Network

Multiple Nodes
Multiple Clients

10

15

20

25

30

35

40

45

50

55

60

65

40

Multiple API implementations on same network
Multiple API implementations on the same network
node
API(s) using same op codes—Namespace
SAP assignment
SAP discovery
Message Architecture

Message architecture is a primary design element whose
solution has many dependent design consequences. The inter-
nal communication network 14 protocol 28 provides new
possibilities for event driven message architecture as opposed
to previous networks. An element to consider is whether
nodes will poll one another if they will register for notification
messages.

Polling is a practice of nodes periodically sending mes-
sages to the owners of data requesting updated values (e.g.
continually request data every 100 ms). Polling is generally
simpler to implement and more commonly used, and can
maintain connection integrity verified with each request.
However, when polling, the client must continuously ask for
information. Network Bandwidth is used up with data that is
not changing (bandwidth is the amount of data that can be
passed along a communications channel in a given period of
time and there are several factors that effect bandwidth such
as: number of nodes on a network, the transmission frequency
[baud rate], and the protocol overhead [CRCs, acknowledge-
ments, source/destination IDs, etc], the transport protocol
hardware, and cabling govern the limits of bandwidth, how-
ever, the Application protocol has the responsibility to make
the most efficient use of the available bandwidth). Polling
architectures do not scale: as nodes increase the number of
messages increases exponentially. Assuming there is infor-
mation on each node that every other node needs:
messages=n"2-n. Data is typically not synchronized with the
memory ofthe control and message latency can be as much as
twice the polling rate.

Eventing is a practice of nodes registering with the owners
of data to be notified under certain conditions with new value
of'data. The data owner is then responsible to send a message
to the observing nodes when the data meets the criteria origi-
nally specified during registration. (e.g. send data only when
data changes). In an eventing model, bandwidth usage is
optimized because data is only sent when it changes. This
model scales well with message traffic and minimizes latency.
Data is synchronized with the control. However, a connection
validation (heartbeat) is needed. Otherwise, a client may not
know when an event source is offline. Alternatively, connec-
tion validation in an eventing model can be achieved using
acknowledgments which are an additional message transmit-
ted from the event observer back to the event source. When
the event source transmits an event message, the event source
will not consider the transaction to be complete until an
acknowledgement message is received. After a timeout has
expired, the event source may retransmit the event. This pro-
cess may repeat for a configurable number of acknowledged
event transmission retries.

In Eventing architectures, Message binding of FIG. 9 and
governed by MMP of 28 can be needed. It is a mechanism to
group events which were generated from the same ‘scan’ of
the microcontroller.

Inthis case, the preferred embodiment is an eventing model
since eventing has advantages listed above as well as the
simplicity of the remedies which address the disadvantages of
eventing. Connection validation is addressed by use of a
heartbeat and/or acknowledged events. When the heartbeat is
used, the event source will send out an event periodically so
that all of the event listeners of that node can know that the

US 9,124,444 B2

41

event source is healthy. Likewise, implementing the heartbeat
such that its frequency is programmable, can also be used to
notify all event subscribers that the event source is healthy.
The heartbeat period is configurable from the network.
Acknowledged Events which are described in detail herein
are an alternate method which can be used in addition to the
heartbeat or programmable heartbeat to insure connection
integrity. Message binding is addressed with the message
bounding bit in the payload of each message packet 28. This
allows the software architecture 10 driver to collect messages
corresponding to the same microcontroller scan and present
those to the application layer as a whole.

Using a the a sub-component of the invention known as the
DAQ 30, the software architecture allows a client 16 to
dynamically register with an appliance control components
16 (enabled with the software architecture 10 and including
the optional sub-component of the software architecture DAQ
30) via the internal communication network 14 to receive
notification when the value at a specified memory location
changes relative to a specified condition. This relieves the
appliance control 16 from having hard-coded feedback vari-
ables and allows real-time feedback to change according to
the application, without client polling (event-based updates
are accurately broadcast as needed).

A dynamic memory heap of FIG. 33, i.e., memory reserved
for runtime configurable feedback messages, is employed
wherein the size of the heap is configurable at compile time.
It has been found that each feedback event variable requires
about 10 bytes of RAM. The events registered in the heap
(NVOEvent of FIG. 33) can be added or reset through internal
communication network 14 commands issued by the client to
acomponent enabled by the software architecture having also
installed the optional sub-component DAQ 30.

Payload Structure 28A

One example payload structure is a static compound pay-
load which consists of grouping multiple variables together
(at design time) so that the client can, with one transaction,
send a complete command to, or receive the complete state of
a component within the appliance 12. In the case of a com-
mand, the client may not intend to change every variable in a
payload, therefore, a pre-requisite status update is required to
populate the command payload with the current status for
those variables which are not intended to change. Moreover,
the variables that change may not map directly into a single
payload definition resulting in multiple messages containing
interspersed changed and non-changed data.

In a simple payload structure, only one variable can exist in
a payload. This has a simpler, easier implementation and can
approximate a dynamic compound payload (described
below). However, bandwidth is not optimized because of a
larger ratio of message overhead to data and message binding
needed as variables are sent separately.

In a dynamic compound payload structure, payloads are
not statically defined at design time, but are dynamically
created by the sending node. In this case, the length of the
payload is determined by the data, which the sender wishes to
send, and moreover, there must include identifiers and possi-
bly delimiters in the payload, which will allow the receiving
parser to un-marshal the component parts of the payload. To
reiterate, the receiving node must have a parser sophisticated
enough to separated the multi-variable payloads into their
component parts. This payload structure optimizes band-
width but can increase ROM requirement due to the sophis-
tication required by the parser. There is also some added
overhead to the application protocol since the dynamic com-
pound payload must embed op code lengths as part of mes-

10

15

20

25

30

35

40

45

50

55

60

65

42

sages, requires additional parsing by the receiving component
and can be hard to understand and implement.

It is a preferred embodiment of this invention to employ a
simple payload structure for the application protocol. The
complexity of a dynamic compound payload can have diffi-
culties in a cost-benefit analysis for the messages employed in
the software architecture 10. To maximize the use of the
software architecture 10, the complexity of the interface
should be preferably minimized. By way of using compound
payloads, by their complex nature, would potentially retard
the use of the software architecture 10, especially with
embedded clients. Simple payloads are a good approximation
of dynamic compound payloads even though there can be
additional message overhead (i.e., there are five bytes of
overhead for every the internal communication network 14
message). There is an additional two bytes of overhead to
support the software architecture 10 application protocol 28.
This leaves 13 bytes per the internal communication network
14 message protocol 24 for data in some application-specific
conditions. Using a static compound payload can be inflex-
ible and wasteful.

Message binding of FIG. 9 is addressed with the use of the
MMP bit in the payload of each message packet. This allows
the software architecture 10 driver to collect the messages
corresponding to the same microcontroller scan and present
those to the application layer as a whole.

State Aware Commands

Relative to a user interface for an appliance 12, the appli-
ance 12 acts like a state machine. As keys are pressed, the state
machine transitions from one state to another. For each state,
it is known what keys are valid candidates for the next push.
Likewise it is also know which keys are not valid for the next
push.

Generally, when a key is pressed that is invalid, the appli-
ance 12 will produce an audible alarm to indicate to the user
that the Appliance was in an inappropriate state for that key.
The same concept exists for the external client wishing to
send valid commands, albeit that this client may not sending
key presses.

In general, two types of state machines are developed for an
appliance control: the key press state machine (as mentioned
above) and a process state machine. An example of a typical
process state machine is shown in FIG. 7.

FIG. 7 is a schematic illustration illustrating various states
of a household appliance 12, such as a washer shown by
example in FIG. 7, and to the interaction of the software
architecture 10 through various states 32 and a fault error
mode 34. The various states 32 of the example washer appli-
ance are shown in FIG. 7 as idle, washing, rinsing, spinning,
and pause. Other states for this example appliance 12 as well
as states for different appliances 12 are contemplated and the
example shown in FIG. 7 should be by example only.

The states of the process state machine can be reported to
the external client 16. However, upon inspection, it can be
seen that the process state machine in FIG. 7 does not address
events from all possible user inputs (i.e. clock set, spin speed
selection, load size option, etc). In general, the logic in the
appliance control has a final else clause which handles all
other cases which were not pre-defined.

Supposing that it is desirable for the client 16 to understand
the rules governing the state transitions of the control so that
it may avoid sending invalid commands. Accounting for the
fact that the client 16 will not be sending key presses, the
designer must understand that there is no available document
or data structure allowing client side validation (i.e., valida-
tion before the request is sent). Eventually, this can lead to
client applications that are likely to send a command that the

US 9,124,444 B2

43

receiving component will not execute due to its validation
logic which is based on the exemplary state of FIG. 7.

The solution can have an effect not only on bandwidth
usage, but also to the overall robustness and end user satis-
faction of the application. From a bandwidth perspective, it
can be stated that a message not resulting in the desired action,
but rather, an error code or retry is a waste of bandwidth
(assuming that it could be prevented). From a user satisfaction
perspective, applications which prevent the user from making
mistakes are generally considered more “user friendly” than
those which allow the user to make mistakes and then use
dialog boxes to explain what happened.

Various embodiments of state appropriate commands have
been contemplated in accordance with this invention.

Using a client-coded rules section, a subset of state infor-
mation is used to develop case logic or an emulation of the
state of the control for the purpose of preventing invalid
requests. This model typically does not impose change on the
control architecture but can have the client and control can
easily be out of sync. The rules and logic development can be
based on trial and error (e.g., code, test, re-code). A client
design will rapidly evolve, creating poorly designed proce-
dural code.

Using a design-time state-based API data model, a data
model is developed such that the client can interpret it and
prevent invalid requests. In essence, it is a correlation
between state and valid op codes (op codes are message
identifiers). The advantage to this is that the developer of the
Op Code or AP is also responsible to publish information to
the client developer (at design time) allowing the designer to
emulate the state machine on the client. This emulated state
machine enables the client application from sending invalid
requests. It is necessary for the control to expose each state
defined in the API data model. The design-time data model
requires the control developer to be responsible to communi-
cate state rules governing Op Code usage. The client and
control can easily get out of sync because data is not available
at runtime. A document must be created which reflects the as
written code. This document must be maintained and pub-
lished. The document must be parsed or converted into client
side logic and this does not work all of the time. The appliance
state can change just as a command is being sent resulting in
an invalid command.

Using a run-time state-based API data model, this solution
is identical to the previous with the exception that the data
model is not shared between developers at design time, but
between client and control at runtime. Some additional mes-
saging is required for this data to be communicated from the
control. In the runtime data model, the control developer must
be responsible to communicate state rules governing Op Code
usage. A client can discover at runtime the Op Code/State
correlation definition. The client and control are always in
sync and the client and developer activities are optimized—
no manual translation to/from a document. Additional code
(ROM) (written once) required to marshal and un-marshal Op
Code/State correlation definition. Some network bandwidth
required for transmission of data and some start-up latency as
a result of transmission of data. This does not work all of the
time. State can change just as a command is being sent result-
ing in an invalid command.

Using a post-command acknowledgment enumeration
model, the three options above have the goal of preventing the
command from being issued by client to control in the invalid
state. This solution does not attempt this pre-emption.
Instead, this technique allows the client application to send
any command at any time. If the command is invalid, an
acknowledgment will occur so that the client can take appro-

10

15

20

25

30

35

40

45

50

55

60

65

44

priate action. This acknowledgment may or may not include
an enumerated reason code. In a post-command reason code
model, there is no change imposed on the control architecture
but a client is more likely to send commands which will be
rejected. The client developer must design a strategy to
handle rejection acknowledgment and the end-user experi-
ence may not be as pleasant due to frequency of rejected
command messages.

Using a design-time naming convention and source code
parsing model which is a combination of the design and
runtime data models, this has the least impact on the structure
of the embedded code, as well, delivers the desired runtime
functionality. It is accomplished by creating a client-side
parser which can parse the embedded source code and deter-
mine the variable to be monitored for each external Op Code.
The requirements for this solution are: (1) each non-diagnos-
tic external command (Op Code) will have an associated
single Boolean variable which represents the permission state
required for execution; and (2) a naming convention is used
such that a parser can associate each permission variable to
the corresponding external Op Code. In a source code parsing
model, the control developer is responsible to communicate
state rules governing Op Code usage. A client 16 can discover
at runtime the Op Code/State correlation definition pending
proper versioning and the client and control are always in
sync with proper versioning. The extra reference document is
not needed, however, there are non-trivial changes to coding
practice, additional logic to be executed each scan, small
additional RAM and ROM required, and only sophisticated
clients are able to parse source code.

Using a learning client model, this solution requires no
change to the embedded system. In this case, the client would
“learn” after each rejected command and build a client side
permission map that could, over time, achieve the desired
runtime behavior. In a learning client model, there is no
change imposed on the control architecture, however, this
assumes that the correct state variables are being evaluated at
the time of rejection. If no state variables are being observed,
then the client cannot learn what caused the rejection.

Ithas been found that several of these options are preferred
embodiments. For now, a main preferred embodiment is the
runtime API data model. An exemplary beneficiary of this
design would be the home control application. The model,
however, requires additional embedded design. And because
the current business environment does not create a require-
ment for this embodiment, the post-command acknowledg-
ment is adopted until such time that the cost-benefit of adopt-
ing the runtime API data model (also referenced as Taxonomy
Engine) becomes favorable.

One of the challenges of the software architecture 10 is to
provide functionality without impacting the production
schedule of the appliance 12. The software architecture 10
can implement an acknowledged request model. NVOReci-
peStatus (AP ID=1, Op Code=1) is a preferred acknowledg-
ment message that the software architecture 10 sends after
each message received.

API Versioning—Discovery of FIG. 6

Although the core of the software architecture 10 is inde-
pendent of any API, its purpose for the software architecture
10 is to expose multiple APIs. Itis realistic to expect that APIs
will be continually added to the software architecture 10 over
time. In anticipation of this, consideration for API discovery
and versioning is made.

It is also conceivable that as the software architecture 10
applications grow, the microprocessor resources will not be
sufficient to support all the software architecture 10 APIs and
functions simultaneously. With the use of compiler directives,

US 9,124,444 B2

45
the software architecture 10 can be configured so that APIs
will appear and reappear for the same model over the devel-
opment life of the machine.

Discovery is akey to the long-range success of the software
architecture 10. A fundamental purpose of the software archi-
tecture 10 is to act as middle-ware between client 16 and
control component 16. Given the scenario described below, it
will be necessary for clients 16 to query the control to dis-
cover what the current capabilities are. If certain capabilities
are not present (i.e., compile time decision), it is desirable for
the application to be able to gracefully fail and communicate
to the user that the support for the application is not currently
compiled into the appliance control software.

There can be dozens of client implementations and dozens
of cross-platform and platform specific APIs. Compiler direc-
tives can be developed to include or exclude certain functions
of'the software architecture 10. There may not be space on the
control for all possible functions of the software architecture
10 to exist on the microprocessor simultaneously.

Various embodiments of the invention described herein
relating to the versioning and discovery methods of APIs are
contemplated without departing from the scope of this inven-
tion.

Using a model number-based discovery model, the client is
responsible to understand the capabilities of the control. This
can be done using client-based data structures, remote data
bases, or runtime code delivery vehicles like OSGi which
include all relevant information on a particular model number
for an appliance 12. In a model number-based discovery
model, there is no additional requirement on the appliance
control. However, amodel number is not typically assigned at
beginning of a product development cycle so it is not available
in early software development. Model numbers can be
changed due to color schemes, branding, and other irrelevant
factors. Different APIs can be residents on the same model
due to compiler directives. The client can be required to be
responsible to acquire capabilities definition or equivalent
code after discovery.

Using an API ID-based discovery model, API-based dis-
covery does not rely at all on model number, but rather defines
any product as a collection of well-defined interfaces. This
technique allows for the same APIs to be resident on multiple
products resulting in some reuse. In an API ID-based discov-
ery model, the reference to API ID compensates for the short-
comings of a model number-based approach. This model
allows multiple products to share same compiler directives
and same API definitions and can promotes sub-function
reuse of the software architecture 10. However, the client can
be responsible to acquire capabilities definition or equivalent
code after discovery, additional management overhead can be
required to maintain and assign unique APIs, and additional
resources from a control microprocessor can be required to
support discovery Op Codes (i.e., additional messaging).

Using a capabilities discovery model (also referenced as a
Taxonomy Engine), this model takes API Discovery an addi-
tional step. In addition to the ID of an API, the client will also
request and obtain the data definition corresponding to that
APIL In other words, the client will discover each function
call, each function calls arguments, and all the valid values for
each argument. In the capabilities discovery model, no sec-
ondary lookup is required to acquire capability definition.
This model approaches a UPnP or Web Service type concept
and sets the foundation for the conversion to LCD screen user
interfaces which can be data driven. However, this concept
may be cost deficient when applied to low margin mechanical
key pads and actuators. And, to take advantage of this tech-
nique, the client 16 must develop an interpreter for the capa-

10

15

20

25

30

35

40

45

50

55

60

65

46

bilities definition which can require more intensive modeling
effort by the software architecture 10 sub-function developer
and significantly more resources from the control micropro-
Ccessor.

It has been found that, at the time this application was
prepared, an API ID-based discovery model is a preferred
embodiment. In addition to API ID, each API can have a type
and a version, so that many different permutations of an API
can exist over time. This can make the protocol much more
flexible (e.g. there can be many types of APIs for a particular
appliance 12, such as a dryer, as well as a different version of
each type: Dryer API, Horizon Dryer Type, Version 1).

Discovery can be initiated in a number of ways according
to the invention. On power up, each node enabled with the
software architecture 10 broadcasts a message on the internal
communication network 14 called Publish Node.

Secondly, a node, at any time, can broadcast a message on
the internal communication network 14 called Find Nodes.
This message will result in all nodes responding with a Pub-
lish Node message. This API is discussed in more detail with
respect to FIG. 5 and the Discovery API.

As discovery is a key to the software architecture 10, ver-
sioning is a key to successful discovery. The same rationale
used to justify API discovery can be applied to API version-
ing. Versioning allows the client to find out more information
about the API which it has discovered.

During API discovery, the API version and type is reported
within the same data structure as the API ID. For example, a
simple number bumping approach can be employed. Further,
a one- or two-byte or n byte data structure for API ID and a
version number are contemplated.

Connection Integrity

In eventing architectures, connection integrity is an issue;
whereas in polling architectures, connection integrity is
inherent. In eventing architecture, the client 16 can success-
fully register to listen for feedback (such as for a temperature
reading). Once registration is complete, the client relies on the
control for notification of changes to temperature. As such,
the client would interpret a network problem as a constant
temperature. By contrast, in a polling architecture, the client
would constantly ask the control for temperature feedback the
response or lack thereof would immediately indicate the
integrity of the connection.

Using an optional heartbeat model to perform connection
integrity, a client must register for a network-based heartbeat.
Using an automatic heartbeat model, the software architec-
ture 10 produces a heartbeat automatically when a notifica-
tion registration buffer is not null. Heartbeats can be broad-
cast messages or messages directed at a specific node.

In an optional heartbeat model, if there is an instance when
it is not needed, the heartbeat can be eliminated. In instances
where it is needed, a client must configure the software archi-
tecture 10 to produce a heartbeat. In an automatic heartbeat
model, there is no effort required for desired functionality—
the software architecture 10 is inherently robust. In a broad-
cast heartbeat, fewer messages need to be sent, a custom
heartbeat can be accomplished through time-based event
updates and it has simpler implementation. However, this can
result in message handling from other network nodes which
are not participating in the software architecture 10 collabo-
ration. Also, nodes not properly handling broadcast messages
can misinterpret incoming messages. In a directed heartbeat
model, only enabled nodes need to handle the software archi-
tecture 10 application protocol. However, more messages can
be sent using a directed heartbeat model.

For this invention, it has been found that a preferred
embodiment is a heartbeat for connection integrity, and spe-

US 9,124,444 B2

47

cifically, a broadcast messages can be used for a heartbeat.
Clients that do not prefer the broadcast heartbeat rate can
alternately use a periodic time-based NVO event update
instead. Making the heartbeat automatic can lessen the bur-
den on the client. With respect to the APIs contained in the
software architecture 10, the following functions are sup-
ported as part of the Core API (Id=1): Heartbeat Message, Set
Heartbeat Period. The heartbeat is preferably automatically
initiated with a default period upon receipt of the first mes-
sage from a client 16.

An additional optional preferable method for connection
integrity can be introduced into the software architecture 10.
It has been found that as the application of the software
architecture proliferated, it was determined that an additional
method of connection integrity was needed. Using the heart-
beat method for connection integrity is appropriate for many
application scenarios. This method is chosen because it rep-
resents a good tradeoff between utilization of bandwidth and
confidence level of the event source. However, it is possible
that an event message sent by the software architecture 10 will
fail to be processed by the intended event subscriber even
when the event subscriber did not detect a missing heartbeat.
In this case, the event subscriber cannot detect failure and
therefore cannot take corrective action. The corrective action,
in the case of a detected missing heartbeat, is that the event
subscriber may request that the event source re-send (all or a
sub-set of all) events so that the event subscriber has the most
current data. To address this potential undetected failure
mode, a second method of connection integrity has been
made available through the software architecture 10. The
method, known as acknowledged events, allows the integrity
of each event message to be individually managed. FI1G. 29
illustrates the functionality of the acknowledged event. Fur-
ther details concerning acknowledged events are described in
the descriptions of FIG. 29.

Trafftic (Flow) Control

Configurable asynchronous processes are powerful, but
can fail when configured beyond their physical processing
and bandwidth limits. Mechanisms are introduced to prevent
saturation in four known failure scenarios: inbound invalid
requests, inbound valid requests, outbound message events,
and a power-up condition.

Inbound Invalid Requests. It is likely that the client will
format and send a request that cannot be properly parsed or
understood by the control or may be invalid per the state of the
control.

Inbound Valid Requests. Without consideration, the client
may ask the control to do a second task before the control has
been able to process the first.

In a buffering model, a receive buffer could be used allow-
ing the client to send many requests without concern for the
control’s ability to service them. In this model, the client has
no responsibility even though the implementation of this
model is simpler. However, buffering does not solve the flow
control problem; it only delays or makes the problem less
likely or less frequent and buffering requires more RAM.

In a flow control model, messaging can be used so that the
client is required to wait until a control is ‘ready’ before
sending a second request. In a flow control model, the flow
control problem is solved robustly, and failure modes are
eliminated. However, a client must implement a flow control
protocol.

In an acknowledged request model, a control provides a
response either positive or negative to each client request. In
an acknowledged request model, this model allows a client 16
to develop simple re-try or recovery scenarios. However, this

10

15

20

25

30

40

45

50

55

60

48

model requires more bandwidth for the acknowledgments
and additional ROM and design is required.

In an unacknowledged request model, client requests are
un-acknowledged—a client must use state information to
determine if the command succeeded. In the unacknowledged
request model, less bandwidth and ROM is employed. How-
ever, application user experience can suffer, a client applica-
tion has no indication if an issued command was successful
and therefore cannot automate retries, and a user will notice
anunsuccessful command and need to manually replicate the
command actions.

It has been determined that a preferred embodiment of this
invention is a flow control protocol with an acknowledged
command model. Moreover, acknowledgments can be enu-
merated such that a client process can develop the most robust
recovery scenarios as possible. Because the acknowledge-
ment message previously mentioned in this invention pro-
vides the API and op code for the acknowledged command, a
client can discern the command being responded to. This
prevents confusion in a multiple control board network, in
which multiple control boards inside of an appliance all uti-
lize the software architecture 10. Flow control and command
acknowledgment are techniques which allow the client to
send data as rapidly as possible without saturating the control.
The benefits can be very responsive applications without
introducing unnecessary latency or unexpected application
failures.

The flow control benefits are achieved using publish
Acknowledgement, API 1d=1, Op Code 1. Each command is
acknowledged with a publish Acknowledgment response. A
new command is only allowed after receipt of a publish
Acknowledgment value of READY or UNSUPPORTED.
publish Acknowledgment has the state machine for command
flow control as shown in FIG. 8.

FIG. 8 is a schematic illustration showing how the archi-
tecture 10 of FIG. 1 interacts with incoming commands
according to the invention and validates or rejects those com-
mands based upon the state of the household appliance. Vari-
ous flow control status indicators are shown in FIG. 8 with
reference numeral 36 as, e.g., POWER_UP, READY, BUSY,
REJECTED, and UN_SUPPORTED based upon various
commands 38 and issued responses 40.

Outbound Messages Events (Feedbacks). During each
scan of the microcontroller, the DAQ 30 of software architec-
ture 10 collects byte arrays representing the events that must
be sent out on the bus (see PROCESS DAQ EVENTS state of
FIG. 36. The DAQ 30 of software architecture 10 is config-
urable as shown in FIG. 5 and therefore it is possible that the
client or clients could configure the software architecture 10
to transmit more data than is possible for the bandwidth ofthe
communication bus (i.e., over configuration).

In order to prevent this, a configuration limit model can be
employed which would limit the ability of clients 16 to con-
figure the software architecture 10 to avoid this problem. In a
buffering model, the software architecture 10 can be equipped
with a transmit buffer. In a saturation message model, the
software architecture 10 detects when there is too much data
presented to the transport layer such that the data may not be
sent to the client. In a require reinitiation model, event distri-
bution is suspended and an event saturation message is send
out and/or broadcasted. Eventing is resumed once a SendE-
vents (e.g., 255=ALL) message is received. In a no re-initia-
tion model, a saturation message is sent out and/or broad-
casted and then the software architecture 10 continues
eventing.

In the transmit buffer model, the client has no responsibil-
ity and client implementation is simpler. However, buffering

US 9,124,444 B2

49

does not solve problem; it only delays or make problem less
likely or less frequent and requires more RAM.

In the configuration limit model, this model would prevent
problem so that a recovery process is not necessary, it is
impossible to derive a configuration limit, and the limit is
based on machine state transitions which are of a random
nature relative to the software architecture 10.

In the saturation message model, the client can detect that
the software architecture 10 was unable to submit new data to
the internal communication network 14 on at least one scan.
The client is unable to determine if data was missed and the
saturation message does not necessarily mean there was fail-
ure—only the possibility of missed data.

In the no re-initiation model, the client has no responsibil-
ity, however, the client developer is not forced to implement
saturation recovery process, the client developer can not be
aware that events can be dropped due to over configuration of
the software architecture 10. This type of failure is not cata-
strophic and therefore client applications may be oblivious to
the loss of data.

In the require re-initiation model, the client developer must
consider the saturation failure and its implication to the appli-
cation, this prevents transient hard to find bugs, and the failure
modes are catastrophic and/or obvious. However, the client
must implement a saturation recovery process and there may
be momentary latency during a required re-initiation process.

In a do nothing model, unnecessary work is avoided but an
unforeseen situation may arise causing client developer to
spend time troubleshooting something which can be diag-
nosed pro grammatically.

It has been determined that a saturation message that does
not require re-initiation to be available via compiler directive
is a preferred embodiment of this invention. The saturation
message must be successfully transmitted before further
events are put into the transport layer transmit buffer. The
following messaging functions are supported as part of the
software architecture 10 Debug API (API 1d=4): get Saturated
and Register for Saturation Message.

As shown in FIG. 4 packet structure 28, all packets of the
software architecture 10 use a Cmd/Fb flag enabling the pos-
sibility of namespace conflict. Thus, it is possible to overlap
op codes under the same API using the Cmd/Fb flag for
discernment.

Power-Up Condition.

If'the software architecture 10 node experiences a transient
loss of power or micro reset, it might be possible for the client
to have an incorrect snapshot for the software architecture 10
modules variables. For robust operation, the software archi-
tecture 10 can notify its client that the previously exported
variables can no longer be considered valid. When consider-
ing the transient condition, the configuration of the software
architecture 10 could potentially be stored in non-volatile
memory, which would allow for the automatic resumption of
communication.

In abroadcast message model, the software architecture 10
can send a special broadcast message notifying all clients to
‘dump their cache’ upon power-up. It is understood that some
applications of client 16 may not need to consider this failure
mode and therefore would not make use of the special mes-
sage. Itis also known that the software architecture’s software
operating environment could experience a failure (resulting
in a reset of its internal memory) and a recovery within the
heartbeat period. With only the heartbeat as a means of detec-
tion, this fast recovery would obfuscate the probability that
the client’s 16 memory holding copies of certain values from
the memory of the software operating environment of the
software architecture would no longer correspond to the cur-

20

30

40

45

50

rent values within the memory of the software operating
environment. To address this failure scenario, a power-up
message can be included in the software architecture 10. This
message is independent of the heartbeat and would indicate to
any client 16 that any previously held values of the memory of
the software operating environment of the software architec-
ture 10 would be most probably be invalid and that the client
should, through the use of the sendEvent message of API11 Op
Code 7, re-acquire the current values. It is also understood
that the client should suspend or modify any logic or calcu-
lations which operate on these memory values in an appro-
priate way until the current values are re-acquired.

In a loss of heartbeat model, the software architecture 10
can discontinue its heartbeat, allowing the client to determine
the proper failure mode action. However, as described above,
loss of heartbeat model does not cover all failure scenarios.
This is especially true when using the automatic resumption
model.

In an automatic resumption model, the software architec-
ture 10 can automatically resume normal operation from the
last known state after a power-up or reset. In the automatic
resumption model, the client may misinterpret the informa-
tion received as state transitions that did not occur. In other
words, for some State A existing before a Reset or Power-up
and some State B which is the initial power up State; without
additional indication of a State I representing power-up or
reset, the client may interpret a State A to State B transition as
occurring without having passed through State .

In a require re-initiation model, a client developer must
consider the scenario of the preceding paragraph and its
implication to the application. This can prevent transient,
hard to find bugs, because the failure is catastrophic and as
such easily identified and fixed. However, the client must
implement transient recovery process and there can be a
momentary latency during re-subscription/data re-acquisi-
tion process.

It has been determined that a loss of heartbeat model
requiring re-subscription after a power-up/reset is a preferred
embodiment of this invention. The advantage of a special
broadcast message indicative of the state of initial conditions
is also understood to be a useful indication when the resources
within the software operating environment allow for such
additional feature. Even though the heartbeat mechanism can
be made to approximate the utility of a power-up message
mechanism by making the heartbeat time out small, a pre-
ferred solution will include a powerup message when
resource constraints of the software operating system are not
prohibitive. For this reason, the software architecture 10,
supports as an optional feature, a power up message which is
API 1d=3, Op Code=2, publishSANode. Re-subscription can
be required because the dynamic event triggers are stored in
RAM and will be lost on a power up.

Preferably, the software architecture 10 module does not
send any messages out until it has detected a client except the
optional power up message publishSANode. A client is
detected by the receipt of a valid command. Once the client is
detected, a configurable heartbeat message begins broadcast-
ing and the software architecture 10 is then ready for normal
operation. Therefore, if the host microprocessor for the soft-
ware architecture 10 experiences a power-up/RESET, the
client will be notified by sensing the absence of the Heartbeat
message (see APl Id=1 Op Code=2) and optionally sensing
the message, publishSANode (see API 1d=3 and Op Code=2).
State Integrity

The DAQ 30 of FIG. 5 of the software architecture 10
provides several distinct advantages over a commercially
available DAQ systems. The software architecture 10 can

US 9,124,444 B2

51

expose any variable in the microprocessor memory. In gen-
eral this will also include the I/O signals of interest. Prior art
DAQs cannot do that. The software architecture 10 is avail-
able to production machines via a single 3-wire plug, whereas
prior art DAQs or emulators require more wiring or harness-
ing. Prior art DAQs are not practical in the context of a
consumer field test. The software architecture 10 can be
deployed on the production system. The software architecture
10 coupled with a modem can provide remote monitoring.

The most fundamental aspect, making the software archi-
tecture 10 different from prior art devices is that it runs as a
blocking subroutine (SA_ProcessOutgoingEvents of FIG. 36
and FIG. 11) called synchronously from the main() function
of the microprocessor. This insures that the client can have
(within the limits of network bandwidth) a complete scan-by-
scan snapshot of microprocessor memory exactly as the
execution engine of the microprocessor scanned it. This
opens up many interesting possibilities ranging from low-
cost emulation and debugging to hybrid algorithm develop-
ment using the software architecture 10 to enable PC-aided
co-processing with the production electronics.

A comparison of asynchronous data collection and syn-
chronous data collection methods will now be described. In
asynchronous collection:

1. Let A and B be variables inside the appliance control
memory.

2. Let C be a variable calculated in the client as the product
of A and B.

3. Let A=23 and B=67.

4. Client polls for A: A=23.

5. A and B change. A=56, B=77.

6. Client polls for B: B=77.

7. Client calculates C: C=A*B=23*77 (this combination of
A and B never occurred on the microprocessor).

8. Client presents invalid value for C to the consumer or end
user of the application.

Most applications will work with asynchronous data col-
lection. It is simple and straight forward. However, problems
associated with asynchronous collection are extremely time-
consuming to debug and identify.

In synchronous collection, the client defines or registers A
and B with the software architecture 10. This allows the
software architecture 10 to maintain coordinated values of A
and B on every scan.

1. Client registers for A and B

2. Client requests a send all.

3. Current values for A and B are sent by the control to
client.

4. A and B change. A=56, B=77

5. Control sends bounded event(s) containing A=56 and
B=77

6. Client does not calculate C until the bounding or end
delimiter bit is reached.

7. Client calculates C=56*77

8. Client presents correct value of C.

With synchronous data collection, the data collection is
robust and virtually bulletproof. It enables applications which
have not yet been conceptualized and allows for ‘real time’
debugging of production software w/o special coding on the
production electronics. However, additional RAM is required
on the control to maintain snapshots of client “care about”
variable or property list.

The software architecture 10 preferably can support and
promote both asynchronous and synchronous data collection.
Asynchronous memory polling, for example, is available in
the Core API (API ID=1). There are at least two available
embodiments of synchronous data collection.

10

15

20

25

30

35

40

45

50

55

60

65

52

Understanding the invention related to synchronous data
collection is helped by an understanding of the concept of
bounded updates. Bounded updates are events that are
grouped together as a snapshot of the appliance state taken
during the same scan of the host microprocessor’s Main()
loop execution. The appliance control main loop will allow
for an iterative update of feedback variables that are regis-
tered with the DAQ API (e.g., every 25 ms). Each registered
variable is monitored and only those that change value
according to their memory monitor change operator are
broadcast as updates to the client. When updates are in the
process of being broadcast, no new updates are allowed in
order to preserve the snapshot in time.

Inthe first embodiment, a snapshot is communicated to the
client using the MMP flag in Byte 2 of the software architec-
ture 10 header as shown in the application protocol 28 in F1G.
4. While the MMP of 28 FIG. 4 is true, more messages are
pending for the snapshot. When MMP is false, the current
message is the last message in the snapshot. Therefore, if the
first message of a snapshot is the only message in that snap-
shot, MMP will be false.

The example in FIG. 9 illustrates a bounded command
(Cycle+Temperature+MMP) with acknowledgements, fol-
lowed by two consecutive bounded updates. Where bounded
refers to elements of protocol which indicate to the receiver
that more messages are coming from the source and that data
processing by the application logic of the receiving compo-
nent should be delayed until the bounding indicators of the
protocol within the packet structure 28 (MMP bit 7) indicate
a complete transaction at which time data processing by the
application logic is permitted. The bounded command is
shown by reference numeral 42 and the two consecutive
bounded updates are shown by reference numbers 44 and 46,
respectively. Notice that updates do not begin until bounded
command execution is complete, providing the client the
ability to filter away transient feedback data. Bounded com-
mands are provided by the same mechanism, MMP found in
28, as bounded updates in order to provide applications a
greater level of control.

The example of FIG. 9 is conceptual. The actual mecha-
nism is MMP found in 28. However for illustrative purpose,
the bounded command begins with an initial “begin” com-
mand initiator (MMP set) and includes commands to set a
washer cycle to wash, a recipe status to ready, a water tem-
perature to medium, again a recipe status to ready, and finally
a cycle start indicator, followed by a command terminator
(MMP unset). It can be noted that, in FIG. 9, updates (such as
by eventing) are disabled to prevent updates from happening
before the bounded command is complete. In addition, a
“process command” indicator is shown periodically through-
out the bounded command processing in the appliance 12 to
illustrate the portions of the command issued from the client
16 through the internal communications network 14 are pro-
cessed.

In the bounded updates 44, the updates are once again
enabled (since they were disabled at the beginning of the
bounded command 42) to allow the appliance 12 to report its
status to the client 16. In the example shown in bounded
updates 44, the acknowledgment state is shown to ready, the
cycle is reported as wash, the state is reported as running, the
basket is reported as fill, the pump is reported as on, and the
temperature is reported as medium. Again, beginning and
terminating indicators enclose the bounded update 44. These
beginning and terminating indicators can be reported by use
of the flag, MMP, in the application packet structure 28 as
discussed in FIG. 4 or another method which would be appar-
ent to one skilled in the art of network protocol.

US 9,124,444 B2

53

In the bounded update 46, the basket is reported as agitate,
the pump is reported as off and the motor is reported as on.
Again, beginning and terminating indicators (MMP) enclose
the bounded update 46. Without the beginning and terminat-
ing indicators (MMP), the client cannot deduce a relationship
between the updates from the appliance. However, with
beginning and terminating indicators (MMP), the client can
deduce a relationship between the events.

The second embodiment of synchronous data collection is
shown in FIG. 48. Generally, a node comprises at least a
micro-processor, a memory, software, and circuitry coupled
to a transmission media where the node is configured to take
information from the memory of the micro-processor and,
with the circuitry, produce a signal representing that informa-
tion onto a transmission media. Two nodes in communication
with each other could be two micro-processors on a single
printed circuit board connected by a serial communications or
two computers connected via the internet.

FIG. 54 shows an eventing software architecture for com-
munications between one node, event source 200, and a sec-
ond node, event observer 202. The software architecture con-
templates the event source sending a message to the event
observer about the event. Rather than sending a single mes-
sage, however, the event source 200 can use a begin event
group message 204 and an end event group message 206 to
create an event group 208 from a series of individual event
messages 210. An advantage of sending separate messages in
this technique is that it more efficiently uses the messaging
architecture in rapidly changing states of an appliance and
minimizes the number of uniquely identified messages
needed to express the state of an appliance. Without the begin
and end event group messages, the event observer 202 cannot
deduce a relationship between event messages 1, 2, through
N. However, with the begin and end event group messages,
the event observer 202 can deduce a relationship between the
events.

This technique can also be used to batch commands, as
shown in FIG. 49. It is conventional for a command source
220 to send a complete command within one complete mes-
sage to a command executor 222. The invention, however,
contemplates using multiple messages to convey the elements
of a command so that a command can be modular and can be
composed by command elements. For this to work, the com-
mand executor 222 needs to know when to execute the com-
mand comprised of multiple command elements, each of
which were sent as an independent single command message.
The invention provides a solution by providing a begin com-
mand group message 224 and an end command group mes-
sage 226, which inform the command executor 222 as to the
which command elements belong together for the purpose of
executing a plurality of command elements as a single aggre-
gated command.

FIG. 55 shows how the command source 220, using a begin
command group message 224 and an end command group
message 226 bounding a series if independent command mes-
sages 228 can create a command group 230. Without a begin
command group message 224 and an end command group
message 226, the command executor 222 cannot deduce a
relationship between command message 1, 2, through N.
However, with the begin command group message 224 and
the end command group message 226, the command executor
222 can deduce a relationship between the command mes-
sages 228. In message aggregation, whether data collection or
batched commands, the MMP flag can be used to identify the
beginning and ending of the message group.

20

40

45

55

54
API Strategy (Key Presses vs. Logical API)

In almost all cases, the appliance 12 is controlled by an
integrated keypad. The embedded software handles the key
presses or user events generated by the keypad and action is
taken. In effect, the key press handling function(s) are the API
for the appliances. The question to be considered in this
section is if this API is the best approach or if a second API
should be developed for an external client 16, 22.

In a key presses model, to use the Key Press API, the
external client 22 must create virtual key presses and transmit
those over the network. The external client 22 must be
designed with the knowledge of the integrated keypad so that
these key presses can be generated correctly and this requires
an external network interface card to generate key presses. In
this model, no modification is needed to underlying keypad
programming. However, the client 22 must monitor the cur-
rent keypad state in order to determine the key presses needed
to achieve desired state. The Client API must change if the
design of the key pad changes rather than machine capabili-
ties. This architecture breaks best practices of software devel-
opment by interposing a presentation tier between a middle
tier and the persistence tier. There will need to be extended
commands for Energy Management, Service and Diag., Test-
ing, etc which are not available in the basic keypad interface.
There must be a way to have a logical API as well as leverage
as much as possible the validation code associated with the
key press handling routines without needing to duplicate
code.

In a logical API model, by contrast, the Logical API is
developed from an abstraction of the machines capabilities
rather than the design of the keypad. For example, Bake on a
European oven using key presses might require that the client
read the encoder position of the cycle dial and programmati-
cally change the encoder to correspond to a Bake setting. If
using a logical API, the client need only send the Op Code for
set Cycle with the enumeration value for Bake: {0x01,0x01}
(setCycle (Bake)). In the logical API model, the client 16 need
not be concerned with the keypad state, keypad design, or key
press handling routines. The API remains independent of
changes to the keypad design, allows for extended com-
mands, and is an industry best practice.

It has been determined that the software architecture 10
will use a logical API which is integrated with the key press
handling routines. The logical API exposes many of the
extended commands, which enable various value-added
applications. In the appliance control, when a key on the user
interface is pressed or an external command is issued, it is
directly mapped to a Logical API function call as a common
entry point (e.g., when the WASH key is pressed or an exter-
nal WASH network command is issued will both call the
SetCycle (WASH) function in a washer with the software
architecture 10 installed thereon). A Logical API function
aims to describe a set of functionality in a parameterized
manner so that it can be re-used. For example, non-logical
specialized functions for temperature might be Increment-
Temp() or Decrement Temp(), which cannot easily be used to
set the temp to any value. But a logical API function can be:
SetTemperature (newTemp, or temp++, or temp—-). This last
function can be used by both key presses and external com-
mands.

A command handler for the software architecture 10 can
comprise a method for the embedded software to response to
either logic commands (e.g., setCycle (bake)) or key presses
(e.g., pressing the “Bake” button on an oven appliance 12).
The method translates incoming key presses and results in an
invocation of the appropriate function within the logical API.

US 9,124,444 B2

55

As much validation and state-based logic as possible exists
inside this Logical API function so that external commands
are treated the same and execute the same code as key presses.
This API can be implemented without a major redesign of
appliance control software. Only the Customer Interface
Manager software must be reorganized and grouped to call
API functions as the entry point for each key press command.
This is not a requirement of the software architecture 10,
however. It only serves to minimize the amount of code that
must be written. If a collection of Logical API functions is not
available to the external command engine, then validation and
state logic found scattered in the appliance control must be
duplicated for each external command, resulting in larger
code size and increased possibility for error.

Identification: Multi-Node Issues

The discussion above on API Versioning and Discovery
established a benefit for a mechanism to discover the APIs
resident on any one node having the software architecture 10
installed thereon. Taken to the next step, there are additional
considerations:

1. Multiple Nodes

2. Multiple Clients

3. Multiple installed Nodes which implement the same API

4. A single Node with multiple duplicate APIs

5. Multiple APIs Using the same Op Codes

6. SAP Assignment

7. Client Discovery of the Nodes supporting the software
architecture 10 Protocol

Multiple Nodes.

It is probable that multiple components on the network will
implement the software architecture 10. Therefore, consider-
ations should be made for networks with multiple compo-
nents which implement the software architecture 10.

In a facade pattern model, the fagade pattern is used to
create simple access to a collection of objects. This is done by
creating an interposing software layer between the client and
the various target objects so that the client has a simple
interface to a single object. This single source is then respon-
sible to forward requests to the appropriate target object. In
the fagade pattern model, this model is easier to manage
because the API is centrally defined. In most applications, the
fagade presents a simpler interface to the client. However, this
model requires compile time design to include other nodes’
APIs into the facade node. Additional RAM/ROM can be
required for the fagade to handle and forward requests to the
target node. And, if two nodes are clients to one another, then
the fagade pattern would create unneeded processing, as the
fagade node would first make request through his own fagade
only to forward those to the target node.

In a distributed services model, this method uses discovery
protocol as the means for the client to find the target objects.
The client is responsible for the independent interaction with
each target object. In other words, the client will discover the
software architecture 10 node(s) and then will interrogate
each as to what API(s) are supported by each node. In the
distributed service model, this model scales well such that
components can be plugged together at runtime. However,
this model can require multiple documents to manage the
network variable definitions (APIs).

It has been determined that the software architecture 10
will use the distributed service model for managing multiple
enabled nodes on the network 14. The fagade approach can be
undesirable because changes to the target object API require
changes to the fagade (change, compile, download, test).
Whereas in a single compile time environment supported by
good refactoring tools, facade could be a good choice. In a
distributed environment, the more flexible distributed service

15

20

25

40

45

55

56

model will allow for faster development and flexible configu-
rations. However, in some cases there may not be enough
resources on each microprocessor in the system to support the
software architecture 10. In other cases, there may be legacy
protocol and there is no desire to make modifications to a
legacy board. In these cases, fagade can be a good alternative
to the distributed service model.

Multiple Clients.

As shown in FIG. 1, multiple nodes or clients 16 on the
network 14 will implement the software architecture 10.
Therefore, considerations should be made for networks with
multiple occurrences of 10. One major consideration is that of
event registration and notification. If multiple clients register
with the software architecture 10 for events, the software
architecture 10 should be able to manage the event distribu-
tion.

Using a node ID directed message eventing model, the
software architecture 10 will store the Node ID(s) of each
event requestor such that when that event is triggered, a
directed message will be sent to the requesting Node(s). In
this model, messages are only sent to nodes that care about the
event. However, this model requires one byte per message to
store the Node ID and requires more RAM to create addi-
tional memory structures for each requesting node.

In a node ID directed message eventing with API ID Iden-
tifier, using this approach, the software architecture 10 stores
the node ID(s) of each event requester such that when that
event is triggered, a directed message is sent to the requesting
node(s). In addition, the API ID of the host node is included in
the event. This model allows the client transport layer to better
route messages internally. However, this model also requires
one byte per message to store the API ID and requires more
RAM to create additional memory structures for each
requesting node.

In a broadcast message eventing model, using this
approach, the software architecture 10 does not track the node
ID of the event requester. When the event is triggered, the
software architecture 10 sends a broadcast message. In this
model, the software architecture 10 implementation is sim-
pler and smaller, there is no need to spend one byte per
message to store the Node ID. However, broadcasting can
create unnecessary event processing by other nodes.

A forth, hybrid approach, which is the preferred approach,
comprises a model where broadcast messages are used which
eliminates the need to store Node Id. However, the client will
include API Id and Op Code in the Event Creation Messages
of'the DAQ (API1d 2, Op Codes 1,2,12, & 13) such that they
are dynamically assigned (as discussed in the paragraph
below). Using this approach, the resultant event message will
contain the assigned API Id and Op Code (as shown in the
publishEvent message of API Id=1) In this message (publi-
shEvent), the API Id and Op Codes of Bytes 1 and 2 of 28 in
FIG. 4, are those assigned by the client 16 using the Event
Creation Messages (cited above).

It has been determined that the software architecture 10
described herein will use the broadcast messaging model
which includes the APIID and Op Code. This will provide the
benefit of routing by trading API ID storage for Node 1D
storage. Given the discussion on SAP below, the risk of
broadcast messaging is much lessened. And although some
amount of processing will be used by the nodes to discard
messages not relevant to them, it is superior to directed mes-
sages which could eventually cause saturation of the network
and of the software architecture 10 code. Including the APTID
allows the client to configure the control with dynamic APIs
which will encourage better, modular designs in the future.

US 9,124,444 B2

57

Using the Same API on Multiple Nodes.

It is probable that some optional network component will
implement the same API as does the Ul or Appliance Manager
board (i.e. service/diagnostic or energy). This will allow the
optional network component 16 to manifest itself to an exter-
nal client 22. Thus, the software architecture 10 can permit
the client 16, 22 to interact with two physical nodes—each
implementing the same API. This design consideration is at
the intersection of several others, and likewise, its resolution
is a combination of pre-existing design solutions.

Optional nodes are possible through dynamic membership.
The client will be able to find out which nodes support the
protocol 28 through the discovery API (see FIG. 6). Each
node may be interrogated to find out what APIs are supported
through discovery as well. Op codes are not globally unique,
but the internal communication network 14 node id coupled
with the API ID and the Op Code are unique. The API ID is
embedded into each event.

To summarize, the client may first discover the software
architecture 10 nodes and then discover the support APIs of
each. The client may then initiate an interaction with each API
of'each node. As each packet 24 includes both the node ID and
the API ID, both client and target will be able to avoid
namespace conflicts and route messages to the appropriate
application space.

Multiple Instances of APIs on the same Network Node.

There are appliance 12 designs, which lend themselves to
API re-use on the same microprocessor. Examples would
include a double oven (i.e., two separately-controlled baking
chambers) or a two-compartment refrigerated drawer. In
other words, in some cases there are multiple cavities that
perform the same function and can therefore be controlled via
the same API. The design approach for this case is discussed.

In a unique function name model, the designer will create
an API ID that has unique Op Codes for each command or
variable without concern for re-using the definition. In other
words, Op Code 10=lower oven set temp and Op Code
11=upper oven set temp. In this unique function names
model, there is less messaging during discovery, however,
this model does not promote modular design and code reuse.

In a multiple API ID model, the designer uses the same Op
Code definition, but will designate a unique API ID for each
instance of the API. In other words, upper oven API Id=1,
lower oven API 1d=2. In this model, there is less messaging
during discovery and this model promotes modular design
and reuse. However, this model will result in consuming the
available API IDs at a faster rate.

In an instance ID model, the software architecture 10
dynamically assigns the API ID to each instance of the API
except for the first instance. The first instance of the API will
be identified by a global API 1D repository. To enable this, the
software architecture 10 specifies API IDs (e.g., 246-255) as
reserved APIs for dynamic assignment to API instances. This
model promotes modular design and code reuse, and does not
consume API IDs. However, there is more messaging during
discovery.

The software architecture 10 is an object oriented protocol
designed to allow objects to discover and collaborate with
each other in a robust manner. Basic to these requirements
are: (1) collaboration entities must be uniquely addressable so
that messages can be appropriately routed on the network and
(2) collaboration entities must be uniquely identifiable so
their messaging contracts, rules for interaction, and compat-
ibility concerns may be understood. In a single runtime envi-
ronment, the compiler is capable to enforce item (2). In a
networked or distributed environment, embedded compilers
do not generally address item (2).

10

15

20

25

30

35

40

45

50

55

60

65

58

Collaboration entity (object or API) addressing uniqueness
is governed by the combination of a 3-bit node ID (found in
the Address Field of 24 in FIG. 4) and an 8-bit API or Instance
ID (found in Byte 1 of 28 in FIG. 4). Any network message
containing these two pieces of information can be correctly
routed. This provides for 255 unique collaboration entities (or
objects) for each network node.

Entity identification is defined by an 8-bit API ID (e.g., a
class identifier), a 2-byte Type ID (i.e., sub-class or special-
ization), and a 2-byte version ID (i.e., Type ID means intent
and Version ID means compatibility).

This two-tiered approach recognizes uniqueness of
addressing separately from uniqueness of identification. This
separation provides for a more efficient use of bandwidth by
removing four bytes of identification information from each
packet. In turn the client must cache the identification infor-
mation and index it by the eleven total bits of address.

It has been determined that the Instance ID model is a
preferred embodiment of this invention. The Discovery API
(API ID=3) has support for the Instance ID in messages,
Publish API Info, Get Instance Info, and Publish Instance
Info. Instancing is a very powerful concept, which can be
exemplified by its use in the protocol.

API—Op Code Namespace.

Messages on a serial network generally have a ASCII or
numeric identifier which allow the receiver of the message to
route the data contained in the message to the appropriate
internal function. This function will then operate on the
remaining data in the payload.

The remaining data in the payload is defined at design time
in a document. This document describes the meaning of each
bit and/or byte in the payload. From this, internal software
message handlers are developed specifically for each payload
definition. Therefore there is, in general, one message handler
for each unique Op Code and Cmd/Fb pair.

Normally, if there were multiple independent payload defi-
nitions that shared the same Op Code without any additional
identification mechanism, it would be impossible for the
receiver to route that message to the appropriate message
handler. However, this invention provides the Cmd/Fb flag to
support the overlap of Op Codes using, the flag for differen-
tiation. Thus, this invention provides the functionality to over-
lap a command and its corresponding feedback message
using the same Op Code.

This section discusses techniques that can be employed to
provide unique identification to message payload definitions.

In a globally-unique Op Code model, using this approach,
Op Codes must be globally unique. In other words, each
platform or API developer must be allocated an Op Code
range (e.g., 350-385) which must not overlap with the Op
Code range of any other project. This model is inefficient due
to range allocations which require spare 1Ds. Further, API
developers will not have control over their Op Code number-
ing scheme and this model requires an order of magnitude
more coordinated decisions (information handoff).

In a globally-unique API ID model, using this approach,
Op Codes are grouped into logical collections forming an
API. The API will be assigned a globally unique ID composed
of API 1d, Type, and Version. Therefore, thy Op Codes therein
need only be unique within the API. In this model, there is no
need for allocated spare IDs, API developers can start at Op
Code=1, and this model requires less information coordina-
tion to avoid namespace conflicts.

It has been found that this invention employs the globally-
unique API ID strategy as a preferred embodiment. Certain
fixed Op Codes, which are part of the software architecture 10

US 9,124,444 B2

59
Core API, revert to the common starting number (1) and the
Core API can preferably be assigned an API Id of (1).

SAP Assignment.

SAP found in 24 identifies the structure of the Wide Pay-
load or SDU 26 It is the same concept as an API ID, which was
introduced earlier herein. The advantages of SAP are also the
same, in that incoming messages need to be identified and
routed to the correct internal handlers (or quickly discarded).
In the example WIDE network 14 discussed herein, there are
sixteen available SAPs. The software architecture 10 fits the
criteria for SAP membership. In this scenario, the internal
communication network 14 administrator can approve the
software architecture 10 application protocol and assign the
software architecture 10 an official SAP. Other network iden-
tifiers for the protocol 24 are contemplated without departing
from the scope of this invention. For example, the software
architecture 10 can be assigned a default SAP of 1 on the
internal network 14.

A SAP (or other sub-protocol identifier) allows the internal
communication network 14 node to participate in the soft-
ware architecture 10 and non-architecture 10 messaging. The
software architecture 10 SAP fits into global architecture, and
adds more scope to the software architecture 10. The internal
communication network 14 SAP is a sound concept from both
a technical and practical perspective. Securing a network 14
specific ID provides the software architecture 10 with global
visibility and official acceptance which can help to proliferate
its use and propel it to a global standard.

The software architecture 10 Discovery FIG. 5.

In the previous section, it was established that the software
architecture 10°s API ID is analogous to the internal commu-
nication network 14’s SAP. Likewise, in previous sections, it
is established that it is advantageous for the software archi-
tecture client 16 to discover by interrogation the API(s),
which reside on each physical node of the software architec-
ture 10.

A similar question and/or solution can be presented for the
software architecture 10 discovery. If a service tool wanted to
dynamically discover all of the software architecture
10 API(s), it would first need to discover the Node IDs of the
internal communication network 14 node(s), which sup-
ported the software architecture 10 protocol. This can be
accomplished by a broadcast message model which sends a
broadcast command which the software architecture 10 nodes
will respond to. In this model, the software architecture 10
can broadcast a new API which is added to the software
architecture 10 or can broadcast the addition of a new network
14 node(s) which implement the software architecture 10.
The Discovery API, FIG. 6 which will serve as the mecha-
nism for the software architecture 10 discovery. There can be
both a polling discovery message and an unsolicited broad-
cast message available and is discussed in the Discovery API
(API ID=3).

Multi-Payload Message Integrity

Frag, bit 6 of Byte 2 in the software architecture 10 header,
enables the software architecture 10 protocol to send pay-
loads greater than that of the underlying protocol (i.e. that of
the internal communication network 14). When Frag is set,
the receiver should realize that the current message will be
fragmented into multiple packets or fragments.

In the message-fragment id model, the first fragment of a
fragmented message uses the standard packet structure as
described in FIG. 4. This initial fragment provides the mes-
sage’s API, Op Code, and Cmd/Fb flag. All subsequent frag-
ments of the message will preferably assume the fragmented
message structure described in FIG. 24. In this structure, the
Frag flag still exists (along with the MMP flag) to reinforce

10

15

20

25

30

35

40

45

50

55

60

65

60

the data. However, Byte 2 now contains the more fragments
pending flag (MFP) in bit 5, message id (MID) in bits 3-4, and
fragment id (FID) in bits 0-2.

The MFP flag informs the receiver that at least one more
fragment of the current message should be expected. The
transition of MFP from 1 to O informs the receiver that the
current packet is the final packet of the current message. MID
provides an 2-bit identifier for each message. Thus, each
fragmented message (group of fragments) will be assigned a
MID, and this MID will then increment for each subsequent
fragmented message (group of fragments). The MID will
increment to 3 and then rollover back to 0. FID provides a
3-bit identifier for each fragment within a message. Thus, for
a particular message, the first fragment will always be
assigned and FID of 0. For each subsequent fragment of that
message, the FID will be incremented. The FID will incre-
ment to 7 and then rollover back to 0.

The fragmentation protocol provided by this invention
allows the receiver to check the integrity of a fragmented
message. By monitoring the Frag and MFP flag, the receiver
can ensure no erroneous halts to a fragmented message. By
checking that the MID does not change within reception of a
single fragmented message, the receiver can ensure that two
separate fragmented messages do not become merged (per-
haps due to a lost fragment). By checking that the FID cor-
recting increments per fragment, the receiver can ensure that
not fragment is lost within a message (or received out of
order). See FIG. 25 for an example of the message-fragment
id model.

In a summary CRC model, this solution makes use of a
well-known existing cyclic redundancy checksum (CRC)
concept. An additional two-byte CRC can be appended to the
last payload of a multi-payload message. The CRC is the
CRC representation of all payload bytes concatenated into a
single combined payload. The sender generates this CRC.
The receiver validates this CRC according to well-known
methods. In this summary CRC model, this solution re-uses
existing CRC algorithms which are established and well
known, however, the CRC algorithm is more complex than
frame counter and the CRC may not be easily portable to a
third party vendor.

Therefore, it has been determined that the message-frag-
ment id model is a preferred embodiment for confirming
multi-payload message integrity in the software architecture
10 according to the invention. The message-fragment id
model is easier to implement for third parties and is easier to
add to the existing architecture 10.

Software Organization

With respect to the software architecture 10, the code orga-
nization and implementation files will now be discussed with
respectto FIG. 10. F1G. 10 is a schematic illustration showing
the software architecture 10 of FIG. 1 according to the inven-
tion in relation to the software operating environment 16A of
a component 16 containing various software components
16B wherein the software architecture 10 comprises a com-
mand handler 50, an update handler 48 and an internal com-
munications network layer interface 52 for interconnecting
the software architecture 10 to the internal communications
network software operating layer 14A, which creates and
sends data over the communications network 14 of the house-
hold appliance 12. Also shown is an example of how other
software components 16B within the software operating envi-
ronment 16A would invoke on and interact with the compo-
nents of the software architecture 10 (50, 52, and 48).

In order to create a more generic implementation of the
software operating environment 16A, the dependency
between the Ul Manager (which is one of several software

US 9,124,444 B2

61

components 16B within the software operating environment
16A) was eliminated. In this implementation, the Main Con-
troller software component 16B executes the invocation onto
50. It was previously believed that the previous implementa-
tion afforded more accurate and robust performance of the
software architecture 10 due to the particular timing details
associated with the execution timing associated with
UI_Manager 16B.

To define the first level of detail for the software architec-
ture 10, three main software components (sub-components)
are shown: the update handler 48, the command handler 50,
and the internal communications network layer interface 52.
The update handler 48 interacts with the DAQ engine 30 in
order to identity information flagged for updates within the
operation of the DAQ such that the internal communications
network layer interface 52 can process said information
resulting in interaction with internal communications net-
work software operating layer 14A resulting in a packet struc-
ture 24 transmitted onto network 14. The command handler
50 validates and processes incoming commands from the
internal communications network layer interface 52 invoking
onto the appropriate software operating function according to
the Identifiers API Id and Op Code values of packet structure
28. The internal communications network layer interface 52
is meant to decouple (as much as practicable) the particulars
of the software architecture 10 from the internal communica-
tions network software operating layer 14A, the network 14
of FIG. 1, and the packet structure 24 of FIG. 4. The internal
communications network layer interface 52 interfaces with
the internal communications network software operating
layer 14A, which creates and sends data according to the
definition of FIG. 4 over the communications network 14 of
the household appliance 12.

Software operating layer sub-components 48, 50 and 52 of
the software architecture 10 shown in FI1G. 1 work together to
manage communications with other components 16 or 22
which also have the software architecture 10 or an alternative
capable to interact with packet structure 24.

FIG. 34 shows several implementation files which are con-
templated for use with this invention.

SA_prm.h.

The software architecture 10 includes configurable param-
eters and command enumerations.

SACore.c/ h.

This file for the software architecture 10 core software
contains the update handler 48 and command handler 50
which processes commands, manages flow control feedback,
and takes snapshots of appliance data for dynamic updates.

10

15

20

25

30

35

40

45

62

SAAppSpecific.c/h.

This file for the software architecture 10 core software
contains appliance-specific command handlers and com-
mand implementations for driving a particular type of appli-
ance 12 (such as a file specifically directed for management
and communication with a washing machine, for example).
Any command that is not generic to all appliances 12 is
implemented in this function. These commands are enumer-
ated in SA_prm.h and are called by the command handler.

SAWideComm.c/ h.

This file contains the internal communication network 14
application layer 52 which provides the interface to the inter-
nal communication network 14 protocol and controls bound-
ing of messages into snapshots, parsing incoming commands,
and processing update flags to send out update messages.

SADagq.c/ h.

These files contain all functionality for the DAQ engine 30.
Thus, all functionality concerning the update handler 48 and
eventing is contained here.

SADiscovery.c/ h.

These files contain all functionality for a node implement-
ing the software architecture 10 to discover other nodes (and
the corresponding functionality of) other nodes which imple-
ment the software architecture 10.

SAVariableMap.h.

This file contains the embedded variable map which allows
for event creation by an external client without knowledge of
a variables address in memory.

FIG. 11 illustrates an example interface of the software
architecture 10 with an appliance control where the software
architecture 10 of FIG. 1 is thrice invoked from the supervi-
sory scheduler (MAIN) according to the invention. Also
shown is MAIN’s invocation onto WIDE.WideExec().
WIDE.WideExec() subsequently calls back onto the soft-
ware architecture 10 according to FIG. 33 where the compo-
nent of the software architecture 10, WideCommHandler,
exposes functions. SA_AcceptData() and SA_BuildData().
Also shown is MAIN’s invocation onto SA_WideComm()
(also a function exposed by a component of the software
architecture 10) which ultimately results in the invokation
shown in FIG. 33 onto the function WIDE.QueueMsg() of the
component WIDE of the software operating environment
16A.

FIG. 13 is a schematic illustration of the example imple-
mentation of the software architecture shown in FIG. 11
including an appliance initialization section. The initializa-
tion function calls SA_Init() from an initialization routine
before entering the main execution loop shown in FIG. 11.

The table following this paragraph illustrates a documen-
tation example of how APIs will be managed, including the
mechanism of Compiler Directives to control the deployment
of the functionality exposed through the APIs of the software
architecture 10.

API Compiler ROM RAM

API Name ID Type Version Directive Use Use Notes

CORE 1 1 2 SA_COR 1810 43 Based on 30
dynamic events
registered

Data 2 1 2 SA_DAQ 1658 373 Based on 30

Acquisition dynamic events

(DAQ) registered (10

bytes RAM/

event)

US 9,124,444 B2

63 64
-continued
API Compiler ROM RAM
API Name ID Type Version Directive Use Use Notes
Data 2 2 1 SA_DAQ_EXT SA_DAQ+ DAQ Based on 30
Acquisition 1064 dynamic events
Extended registered
(includes (includes
SA_DAQ) SA_DAQ)
Discovery 3 1 1 SA_DISC 516 3
Debug 4 1 1 SA_DEBG
Low Level 5 1 1 SA_LOLV
Key Press 6 1 1 SA_KEPR
Memory - 7 1 1 SA_PORT 342 0
Port API
Energy 8 1 1 SA__ENGY
Management
GMCL 9 1 1 SA_GMCL
Poll 10 1 1 SA_POLL
Variables
Service and 11 1 1 SA_DIAG
Diagnostics
Unused
(140-240)
Non-
Standard
(241-245)
Reserved for
API
Instance Id
(246-255)

Inthe abovetable, API Ids inthe 241-254 range can be used .

without consideration for standards. They are intended to
allow a designer the flexibility to use the software architecture
10 in an application where the expectation of re-use is mini-
mal. In such cases, this will eliminate the need to develop a
specific API Id and Type for a collection of messages which
are expected to be a ‘one off’. These Ids can also be used for
candidate standard APIs which have not yet received their
official ID. Additionally, in the above table, the RAM and
ROM estimates are taken using Motorola HCO8 Cosmic
Compiler version 4.3f with the software architecture 10 con-
figured to have 30 dynamic events allowed (i.e., heap
size=300 bytes), 7 APIs defined, and a maximum command
size of 15 bytes.

FIG. 14 is a schematic illustration of a virtual router incor-

porating the software architecture of FIG. 1 according to the 45

invention showing a mapping between a pair of software
architecture implementations. The virtual router of F1G. 14 is
a software design which encapsulates the API implementa-
tions (objects, see APIs 1-8 in each side of the router of FIG.

14) of the software architecture 10 such that the collaboration 50

between an embedded client (application logic, algorithms,
closed loops, sequencers, and state machines) and embedded
components (the software architecture 10 API implementa-
tion: objects like defrosters, heaters, temp sensors, valves,

etc.) is uniform and identical regardless if the entities collabo- 55

rate over the network or share a runtime environment.

FIG. 14 shows six unique collaboration examples labeled
as such illustrative of how a pair of software operating envi-
ronments 16A existing on separate hardware components 16

and connected by a network 14 will use the various software 60

components 16B of the software operating environment 16A
to create transparent access between the operating logic of 59
and the software components 16B of both the right hand and
the left hand software operating environments.

Prior to describing the collaboration examples, a descrip- 65

tion of the structure of FIG. 14 should aid in the understand-
ing of the collaboration examples. Each software operating

35

40

environment 16A contains representations of a sub-set of
useful software operating components (16B) contained,
including: the software architecture 10, internal communica-
tions network layer interface 52, a sub-component of the
software architecture 10, the DAQ 30, and a hardware
abstraction layer 80.

The hardware abstraction layer 80 comprises: a mecha-
nism therein to encapsulate the particular fixed address of the
connected electrical circuits on which the software operating
layers of 80 will operate; and software interfaces (28, 28A, or
82) encapsulating occurrences of 16B in the form of (one of
the following): 28 the packetized representation (an ordered
collection of bytes) of a message exchanged by the software
architecture 10, 28A the packetized representation (an
ordered collection of bytes) of a message exchanged by the
software architecture 10 representing only the application
payload 28A (the valid data arguments) expected by the soft-
ware operating component 84 or 86, 82 an alternate represen-
tation of either 28 or 28A where the intent and data values and
resultant actions are functionally identical but not of the form
of an order collection of bytes. 82 is in the form of a unique
software function having arguments represented by indi-
vidual named variables whose value is derived from 28A or
represented by an ordered collection of bytes derived from
28A.

Application GDMs 84 are variants of 16B known as global
design modules which are standard software operating com-
ponents having been subjected to a standard development
process including functional and non-functional require-
ments, testing, documentation, and implementation guide-
lines. Application GDMs address appliance specific concerns
such as defrosters, heaters, door closure. Application GDMs
can be classified in at least 2 variants. Variant contains specific
application logic apart from 59 used to govern the behavior
and gather information from a collection of other software
operating components including a plurality of other 84(es)
and 86(es). Variant 2 contains specific application logic apart
from 59 used to govern the behavior and gather information

US 9,124,444 B2

65

from a specific electromechanical device or sensor such as a
heater, evaporator, motor, valve, solenoid, relay, pressure or
temperature sensor. Variant 2 may be configured to address
specific concerns made relevant by the specific manufacture’s
variant of the device, by the particular configuration of the
device based on the usage mode determined by the applica-
tion requirements (ie. Scaling values), or by a confluence of
factors which create specific concerns not mentioned hereto-
fore.

Infrastructure GDMs 86 address specific recurring con-
cerns which are independent of the application of the system
architecture of FIG. 1. They can be re-used across a plurality
of appliances such as refrigerators, cooktops, dishwasher,
dryers, clothes washers, etc. Infrastructure GDMs can be
classified in at least 2 variants. Variant 1 is associated with a
particular concern resulting from a recurring combination of
electrical components or electrical constraints. Some
examples are: manufacture interface constraints, device duty
cycles, electrical load characteristics examples of which are
inrush and steady state current limits, or other constraint such
as the mode of analog conversion to digital examples of which
are 4-20 mA current loops vs. 0-5 Vdc analog voltage feed-
backs. Variant 2 is associated with appliance and application
independent software components known as utility functions.
They provide logic used by other 16B components including
59 and 80. Variant 2 may contain or use references to Variant
1 of 86. Examples include timers, zero cross detection, and
other useful software components whose purpose is more
utilitarian than driven by application or electromechanical
requirements.

An embedded virtual router 70 provides an encapsulating
layer by which architectural dependencies (the method by
which one component 16B is accessed by or exposed to
another 16B [examples of 16B are 30, 84, 86] within or
between at least two software operating environments con-
nected by 14) between the application logic 59 (of the soft-
ware operating layer 16 A of the component 16) and the com-
ponents comprised by the hardware abstraction layer 80,
DAQ 30, another instance of application logic 59 or compo-
nent therein, or any other useful component 168 are mini-
mized or eliminated.

A software component 72 used by other software compo-
nents 16B to obtain references to any other software compo-
nents 16B where the obtained 16B may be part of a software
operating environment 16 A existing in or on: the same hard-
ware component 16, a different hardware component 16 con-
nected by 14, a different hardware component 22 connected
by a combination of network segments including 14, or a
different hardware component 16 of a different appliance 12
connected by 14, a combination of different network seg-
ments between the two occurrences of 12, and the 14 of the
first appliance 12.

The software component 72 also provides the mechanisms
for other software components residing within the same soft-
ware operating environment 16A to publish the necessary
identification and/or routing information into the memory of
72 such to enable the aforementioned enumerated uses of 72.
The identification and routing information may be associated
with components residing within the same software operating
environment or the identification and routing information
may be associated with components apart from the compo-
nents residing within the same software operating environ-
ment, but are known by components residing within the same
software operating environment.

Structures 74 in the memory of 70 are able to receive
messages or provide functions for invocation of messages and
are able to send messages or provide callback functions for

10

15

20

25

30

35

40

45

50

55

60

65

66

the distribution of information. These structures having an
access definition of 28, 28 A, or 82 corresponding to an occur-
rence of a software component such as components within 80,
59, or any other useful software component located in the
aforementioned enumerations of 72 and the capability to
route the information to that software component or to an
appropriate intermediate software component having the
same or similar purpose of 74.

Looking now at the possible collaboration examples, it is
expected that the structures 74 of 70 will be created and
populated based on discovery queries containing requests for
access to specific software components 16B which are both
identifiable and routable, invocations implying said access, or
by software components 16B which are able to invoke on 70
on behalf of themselves or other components 16B resulting in
creation and population of structures 74.

Collaboration 1: a command is issued by software compo-
nent 59 of the right-hand software operating environment
16A and received by a software component contained in the
collection of 74 with an identifier of API 1 within component
70 of the same software operating environment. Using the
identification and routing information contained within 70,
the component identified by API 1 transmits the received
information through the other local software operating layers
10 and 52, and finally transmitted over 14 and received by 52
of left hand software operating environment. The message is
then handled by 10 and routed to the appropriate component
within 74 of the left hand software operating environment.
The appropriate 74 of the left hand software operating com-
ponent using identification and routing information con-
tained within 70 of the same software operating component
then invokes on or sends the message to the local implemen-
tation of API 1 contained in the left hand software operating
environments hardware abstraction layer 80. Thus the appli-
cation logic within software component 59 of the right hand
software operating environment invoked a function imple-
mented in the software operating environment of the left hand
side without information contained therein for the realization
of'said invocation. Therefore, the value of the design implied
by FIG. 14 is that application logic 59 is re-useable with
respect to the location of the of the other software operating
components 16B within a plurality of software operating
environments 16 A connected by anetwork 14 or a plurality of
network segments which may include 14.

Collaboration 2: In this case, the initiation of the message
is from 59 of the left hand software operating environment
16A. Illustrated is the case where the final invocation is on a
software component (in this case API 2) within the same
software operating environment using the same methodology
described in greater detail in Collaboration 1. Therefore, in
Collaboration 2, an alternative architectural disposition
between an occurrence of Application logic 59 to some other
useful software component (API 2 of Hardware abstraction
Layer 80) is shown to have no effect on the implementation of
either. And furthermore, it is the purpose of software compo-
nent 70, also being able to comply with the Identification and
interface requirements imposed by the software architecture
10, to provide this capability.

Collaborations 3-6 show additional uses for the Embedded
Virtual Router 70. The mechanisms used to accomplish these
variants are the same as described in Collaborations 1 and 2.
They are included to illustrate the usefulness of the design and
the expected additional message patterns to be available with
respect to the DAQ 30. Local event listeners (3) and remote
event listeners (4) of Application Logic 59 are provided with
an interconnection to a representation of the DAQ engine 30
providing not only a connection to the DAQ in the local

US 9,124,444 B2

67

software operating environment, but also to the DAQ(s)
which reside in remote operating environments. DAQ gener-
ated messages based on the occurrence of DAQ events can be
transmitted locally (6) and remotely (5) through mechanisms
available in 70.

FIG. 15 is a schematic illustration of a persistence node 54
incorporated within the software architecture of FIG. 1
according to the invention. Whereas the state of the art in
embedded systems is to provide data persistence local to the
PCB, the persistence node according to this invention pro-
vides a persistence service exposed to components 16 and 22
through the mechanisms of the software architecture 10 and/
or the embedded virtual router 70.

Various examples of the connectors and protocols (RS-
232, wireless, WIDE, etc.) are shown within the components
of each client which communicate with one another along an
internal network on each component 16, appliance 12 and
persistence node 54. In summary, the persistence node 54 is a
logical entity which is discoverable and useable by all com-
ponents 16 sharing a network 14, 20 or a runtime connection.
This entity will provide services and protocol mechanisms
necessary to read, write, and store information.

As discussed above, appliances 12 are “state” driven
machines and typically have a user interface (e.g., a keypad)
using which a user can effect a change in state of the appliance
12 (e.g., change a washer from an idle state to a “wash” state).
As applications are developed that require external commu-
nication with an appliance 12 (e.g., testing, diagnostics,
remote control, etc.), there are three possible techniques to
perform this interface: (1) translate external commands into
key presses (see FIG. 16 and discussion); (2) use custom
software to execute state-change commands (see FIG. 16 and
discussion); or (3) simply translate key presses into a logical
API (see FIG. 17 and discussion).

FIG. 16 is a schematic illustration of a prior art method by
which external commands are translated into key presses for
testing household appliance functionality. In the prior art
method, a user would actuate an appliance 12 via one or more
key presses 56 to change the state of the appliance (referred to
in FIG. 16 as a “state machine” 12) to affect the appliance
functionality 58. In order to test the functionality 58 of the
appliance, the user would prepare external commands 60 and
either (1) translate the external commands 60 to key presses
56; or (2) prepare custom software 62 which would emulate
the state machine appliance 12 to attempt to duplicate the
appliance functionality 58. This can be difficult and error
prone.

In an new method of operating and testing an appliance,
FIG. 17 is a schematic illustration of the interaction of user-
initiated key presses 56 and externally-fed software com-
mands 60, typically from a client, are both passed as argu-
ments to the software architecture 10 of FIG. 1 according to
the invention for issuing commands to a household appliance
12 to, e.g., test household appliance functionality 58 and/or
change the state (i.e., actual operation) of the household
appliance 12.

The method discussed with respect to FIG. 17 is novel
because, instead of translating external messages, treating the
appliance 12 as a closed system, it exposes the functionality
of'the appliance 12 independently of whether the message is
received as an external key press or a software command local
or remote to the appliance 12. The messages (commands) are
processed through an API of the software architecture 10
(now an open system as opposed to the prior art “closed”
system), while preserving key-press validation and feedback
to the user.

10

15

20

25

30

35

40

45

50

55

60

65

68

Currently, appliance control software is not set up to vali-
date and execute external commands. To remedy this, an
appliance API is defined that includes both user functionality
as well as low-level machine control commands. During nor-
mal operations, when a key is pressed or an external com-
mand is issued, it is directly mapped to an user functionality
API function call as a common entry point (e.g., a WASH key
is pressed on a user interface [keypad] or an external WASH
command is issued will both call a setCycle (WASH) function
immediately, regardless of the state of the appliance 12). All
validation and state-based behavior will exist inside this func-
tion so that external commands are treated the same end
execute the same code as key presses 56.

This API can be implemented without a major redesign of
appliance control software. Only a user interface software
would need to be reorganized to call API functions as the
entry point for any command instead of just reacting to key
presses inside of the state machine 12. Use of this method of
FIG. 17 enables the manufacture of an appliance 12 to test and
diagnose the keypad/user interface separately. This saves
time and effort in development, diagnosis and testing of appli-
ances. This will also eliminate the need for complex mechani-
cal keypad actuation devices as well as mechanical actuation
harnesses which were conventionally used to test user inter-
faces and appliance functionality.

In addition, the appliance 12 API contains a command to
send the appliance into a diagnostic or factory test mode. In
this mode, all state-based behavior and command validation
code is disabled to allow for a low-level API. API commands
in this mode can access and control low-level parts of the
appliance 12 such as reading and writing to EEPROM, press-
ing keys (56), reading sensor values, writing to cycle param-
eters, actuating relays and other actuators, etc.

The API interface discussed with respect to the software
architecture 10 is an object-oriented software package that is
effective when one object (appliance functionality) has mul-
tiple clients that need to interact with it (e.g., both key presses
56 and external commands 60). This is a new approach
because appliances do not currently contain object-oriented
software and are generally thought of as being a closed sys-
tem and having only one client: user interface keys. This
invention contemplates that appliances 12 will have many
clients through the introduction of an internal communication
bus (i.e., network 14) and external connectivity 20. These
clients may include web applications, diagnostic tools, test-
ing tools, and home automation systems, among others.

Appliances 12 with the API software architecture
described herein will be “future proofed” and ready for many
advanced remote applications that customers may request.
These can include energy management, improved service and
diagnostics tools, and remote control and monitoring. Inaddi-
tion, since the API is the entry point into all appliance func-
tionality, customers can benefit from improved automated
development testing and factory testing of appliances 12.

The software architecture 10 also contemplates that the
virtual device model can be aware of the current capabilities
of the physical device (the appliance 12). For example, if an
oven is baking, the appliance clock cannot be modified. Capa-
bilities synchronization is a general solution meant to allow a
virtual model to recognize changes to the capabilities of a
device based on its state.

Currently, this purpose is achieved through code which is
written per appliance 12. The solution contained in the soft-
ware architecture 10 replaces device specific code with a
general solution. This solution is comprised of additional
messages which the software architecture 10 broadcast con-
taining the current set of invalid commands (API and Op

US 9,124,444 B2

69

Code). This information is evaluated at runtime so that the
user interface will be expressed in such a way that the user
may only modify those device characteristics which are
modifiable, so that the customer is not given the opportunity
to modify a device characteristic which is currently immu-
table as dictated by the actual device.

The software architecture 10 is a cross-product system of
applications and tools. These applications help to increase
both quality and speed to market in the product development
process. This is done by interacting with the data that is stored
in memory inside the appliance 12.

In order to stay flexible, configurable and generic, the
applications interact with the appliance by specifying
numeric memory locations (addresses) which are required.
Each time the software in the appliance changes, however,
these locations in memory can move around and take on a
very different meaning. In order to solve this problem, a
variable map file standard and generator were created.

The variable map file generator takes the software names
(textual descriptions) written in code and associates them
with the numeric address and size of that piece of data. It then
outputs this information in a standard file format. This is
executed each time the code is changed and compiled. The
information in this standard file provides independence from
both the compiler and from where data is located in memory.

The variable map file is then read by any application that
wants to interact with a software architecture 10-based appli-
ance 12. Applications are coded against the meaningful tex-
tual names of data, rather than the numeric addresses of data
which greatly simplifies application development.

The variable map file format and usage process are
described in the table below.

Module Variable Name Address Size
appman.h Hour_ Timer 0213 1
appman.h Zonel 020e 3
appman.h Zonel.Act_ Temp 0210 1
appman.h Zonel.Zone_ State Tmr 020f 1
appman.h Zonel.Zone__State 020e 1

An example of the method used in working with the vari-
able map concept includes the following steps.

1. An engineer builds an application coded against the
textual descriptive names of meaningful data located in the
appliance control.

2. The appliance control code changes, resulting in new
locations of the meaningful application data.

3. An engineer compiles the new appliance code, which
also automatically generates an associated variable map file.
The new code and variable map file are deployed together.

4. When the application is run against the new code, it does
not have to change, as long as it has the proper variable map
file.

5. Ifnew data is required by the application, it can be easily
identified or retrieved from the variable map file.

Thus, as shown above, the development engineer need only
remember the “Variable Name” column in the table above,
and not need to constantly look up the constantly-changing
address values in the “Address” columns above.

Referring now to FIG. 18, the household appliance 12,
which is shown as an oven for exemplary purposes, having an
internal communication bus 200 can be electrically coupled
to an external network 202 through a network interface card
(NIC) 204 similar to the aforementioned network interface
connector 20. A NIC is a well-known device that connects a
computer or other client to a network, and any suitable NIC

10

15

20

25

30

35

40

45

50

55

60

65

70

can be utilized with the appliance 12. According to one
embodiment of the invention, the NIC 204 is electrically
connected to the internal communication bus 200 and adapts
an internal communication bus protocol to a standard com-
munication protocol, such as TCP/IP and GSM, so that the
appliance 12 can communicate with an external client (not
shown) through the external network 202, such as a local area
network (LAN) and/or a wide area network (WAN). Thus, the
external client can communicate with the software architec-
ture 10 associated with various internal components of the
appliance 12 that reside on the internal network 14. For
example, the appliance 12 in FIG. 18 is shown as comprising
a user interface (UI) 208 and a sensor-actuator board 210,
each comprising a printed circuit board (PCB) with the cor-
responding software architecture 10, and the external client
can communicate with the software architectures 10 through
the NIC 204.

The NIC 204 can be mounted to the communication bus
200, which is preferably externally exposed, of the appliance
12 through any suitable mounting means, as is well-known in
the computer network art. According to one embodiment of
the invention, the communication bus 200 is located in a
recess 212 defining an opening 214 that is flush with a wall,
such as a rear wall 216, of the appliance 12, as shown in FIG.
18. When the communication bus 200 is located within the
recess 212, the communication bus 200 and the NIC 204,
when mounted to the communication bus 200, are protected
from damage that can occur during transport of the appliance
12.

The NIC 204 can be supplied with the appliance 12 at the
time of manufacture or can be purchased separately from the
appliance 12 as an accessory. Thus, a customer can choose to
purchase the appliance 12 without the capability to connect to
the external network 202 and upgrade the appliance 12 at a
later time to add connectivity, if desired.

The NIC 204 can communicate with the external network
202 through a wired connection or wirelessly. For example,
the NIC 204 can communicate with the external network 202
via wireless infrared (IR) communications or other short
range wireless means. In such situations, the NIC 204 is
preferably mounted to a front side 218 of the appliance 12 to
facilitate robust communication. According to one embodi-
ment of the invention, the NIC 204 can be mounted in a recess
220 at the front side 218 of the appliance, as illustrated in FIG.
19 with respect to an oven, for example. When mounted to the
front side 218 of the appliance, the NIC 204 can be connected
to a rear side 222 of the appliance via wires disposed in a
wiring conduit 224 that extends from the mounting recess 220
at the front side 218 to the rear side 222 of the appliance 12,
where the wires enter the appliance 12.

Another example of wireless communication is radio fre-
quency (RF) communication. For example, a RF printed cir-
cuit board (PCB) 226 can be located inside the appliance 12,
which requires connection between the RF PCB 226 and an
externally mounted antenna. Alternatively, the RF PCB 226
can be mounted externally of the appliance 12, but this con-
figuration requires an electrical connection between the RF
PCB 226 and appliance control electronics, and an installer
must open a cabinet or case 228 of the appliance 12 during
installation of the RF PCB 226. According to one embodi-
ment of the invention, the RF PCB 226 is mounted within the
appliance 12, and a non-metallic safety barrier 230 that is a
poor conductor of heat and electricity is provided as part of
the appliance case 228. An exemplary safety barrier 230 is a
plastic window, such as a Plexiglas window, integrated with
the appliance case 228, as shown in FIG. 20 for an appliance
12 in the form of an oven for illustrative purposes. The safety

US 9,124,444 B2

71

barrier 230 allows for RF communication with the internally
mounted RF PCB 226 without an external antenna and pre-
vents human contact with excessive heat or electricity.

Referring now to FIG. 21, the appliance 12 can be config-
ured with hardware to facilitate service and diagnostics of the
appliance 12. In one embodiment, a service module 232
adapted to removably connect with a standard communica-
tion bus on the appliance 12 is configured to record diagnostic
data, such as by communicating with the software architec-
ture 10 on the internal network 14. The service module can
readily connect to the internal network 14. The connection of
the service module 232 to the appliance 12 is represented by
step 1 in FIG. 21. The service module 232 is then removed
from the appliance 12 and connected to a personal computer
234, such as through a USB port or other suitable standard
communication bus. The connection of the service module
232 to the computer 234 is represented by step 2 in FIG. 21.
After the service module 232 is connected to the computer
234, the service module 232 connects to the Internet, prefer-
ably automatically, and uploads the diagnostic data to a
remote client (not shown), as indicated by step 3 in FIG. 21.
The remote client processes the diagnostic data to identify an
appliance problem or failure and potentially prevent a service
call or, if the problem or failure requires a service call, to
optimize the effectiveness and efficiency of the service call.
Optionally, the service module 232 can download customized
testing scripts based on the diagnostic data to run tests on the
appliance 12 to further diagnose or eliminate the problem or
failure. Reconnection of the service module 232 to the appli-
ance 12 to execute the testing scripts is represented by step 4
in FIG. 21.

An exemplary architecture for the service module 232 is
illustrated schematically in FIG. 21A. The service module
232 comprises a pair of communication buses, such as exter-
nal serial buses. According to the illustrated embodiment, the
service module comprises a USB 236 at one end for connec-
tion to the personal computer and an RS-232 (FIA-232) bus
238 at an opposite end for connection to the appliance 12 and
particularly to the software architecture 10 residing on vari-
ous nodes of the appliance internal network 14. The service
module 232 further comprises memory 240, such as flash
memory, for storing the diagnostic data, the testing scripts,
and other data. The flash memory 240 communicates with a
service logic 242 that controls the operation of the service
module 232.

FIG. 22 illustrates an alternative hardware architecture for
service and diagnostics of the appliance 12. This architecture
is similar to that shown in FIG. 21, except that the personal
computer 234 is replaced with a telephone line 244, and the
service module 232 is adapted for connection to the telephone
line 244. Thus, the alternative architecture of FIG. 22 is more
suitable for appliance users who do not own a personal com-
puter or do not have a personal computer connected to the
Internet. The process for obtaining diagnostic data is the same
as described above with respect to FIG. 21; however, rather
than connecting the service module 232 to the personal com-
puter 234, the user connects the service module 232 to a
standard telephone jack 246, and the service module 232
automatically connects to the Internet through the telephone
line 244.

Referring now to FIG. 22 A, the service module 232 for use
with the system shown in FIG. 22 is similar to the service
module 232 illustrated in FIG. 21A, except that the USB 236
is replaced with a telephone line plug 248, such as an RJ11
plug, for connecting a modem 250 of the service module 232
with the telephone line 244 to establish a connection to the
Internet.

20

25

35

40

45

55

60

72

The service modules 232 described above can be supplied
with the appliance 12 at the time of manufacture or sold as an
accessory during or after the sale of the appliance 12. Other
various types of accessory modules can be provided with the
appliance 12 or purchased later by a customer for upgrading
the appliance 12. An exemplary accessory module can com-
prise a display operably connectable to the internal network
14 and the external network 202 and visible to the user when
mounted to the appliance 12. The display can communicate
various data the user, including, but not limited to, data, such
as operational status, related to the appliance and obtained via
the software architecture 10 on the internal network 14, or
information downloaded from the Internet through the exter-
nal network 202. An exemplary accessory module is a
weather station module 252, which is shown in FIG. 23 as
mounted to an appliance 12 in the form of a refrigerator for
illustrative purposes. In addition to displaying weather-re-
lated information or other information that can be down-
loaded from the external network 202, the display of the
weather station module 252 can also include one or more
touch pads or a touch screen 256 with selector areas 254 for
controlling various operations of the refrigerator, such as for
controlling an ice dispenser and a light, and for accessing
settings, such as temperature, of the refrigerator.

FIG. 24 illustrates the preferred packet structure for a frag-
mented message. Such a packet structure is preferably used
for communication when the message payload is larger than
that of the underlying protocol. This fragmentation packet
structure was previously described in the discussed concern-
ing multi-payload message integrity; however, as brief sum-
mary can be listed here. In a fragmented message, the stan-
dard packet structure described in F1G. 4 is preferably used in
the first fragment. All subsequent fragments preferably use
the packet structure described in FIG. 24. The difference
between these protocols is in Byte 2.

For the entirety of a fragmented message, the Frag flag
should bet set. The MFP flag (more fragments pending)
should be set until the final fragment of the fragmented mes-
sage. MID (message id) gives each fragmented message (the
group of fragments) a handle or id, preventing merging of
separate fragmented message. FID (fragment id) gives each
fragment of a fragmented message a handle orid, allowing the
detection of a lost fragment. A more in-depth explanation can
be found in the discussion on multi-payload message integ-
rity.

FIG. 25 provides example operations of the fragmentation
protocol discussed given in FIG. 24. Explanation of this pro-
tocol can be found in the multi-payload message integrity
section.

FIGS. 26A and 26B represent alternate architectures for
locating the address and Identifier information such that well
formed messages can be constructed and sent to the software
architecture of FIG. 10 resulting in event creation within the
DAQ 30 of FIG. 5. As previously mentioned, the DAQ engine
30 requires a variable’s memory address for event registra-
tion. FIG. 26A illustrates an example of using the client-
configured data acquisition scheme in which the client (com-
puter or other client) holds a current memory map that relates
a variable’s name to its memory location. This memory
address, in addition to the Identifier (API Id and Op Code), is
used to construct a well formed message which is sent to the
DAQ resulting in DAQ event creation. FIG. 26B illustrates an
example of using the client-configured data acquisition
scheme in which the client (i.e. another control board) does
not know the memory address’s of desired event variables. In
this case, the client can utilize the embedded variable map
functionality of the invention. Thus, the client must only

US 9,124,444 B2

73

provide an API and Op Code and is not required to include the
memory address of the variable in the well formed message to
be sent to the DAQ. Because, in this case, the software of the
DAQ performs the additional task of acquiring the memory
location of the variable specified by the Identifier. Once
acquired, the DAQ uses the same function calls referenced in
the previous case of FIG. 26 A to create the event structures in
the DAQ’s array of event structures contained in the DAQs
memory heap.

Variable map information in FIG. 26A relates variable
symbolic names to their address in the memory of 16 A. FIG.
268 relates variable Identifiers (API Id and Op Code) to their
address in the memory of 16. The rational for the alternate
architectures is that these support both interactions with a
human actor who might find it advantageous to work in sym-
bolic names (which tend to be meaningful and communicate
will the usefulness of the variable) and interactions with other
instances of the software architecture 10 or some component
16 or 22 or some other software component which is able to
interact with the software architecture 10. In software based
interactions (non-human interactions) it is advantageous not
to use symbolic names as they require more memory to store,
more bandwidth to transmit, and more computational cycles
to process. Instead, numeric identifiers can be substituted for
symbolic names. The software architecture 10 uses the
numeric identifier API ID and Op Codes as numeric substi-
tutes for symbolic names. Additional numeric identification
is available for any valid occurrence of API Id. Where the
former numeric identification is sufficient to provide a unique
index per component 16 residing on the network 14 and
where the latter, the additional identification information can
be obtained using a secondary query requiring a component
of the former numeric identification, API Id. Then together,
API 1d and the additional numeric identification (the latter)
provides identification unique within the totality of possible
software components able to be represented within the soft-
ware architecture 10.

FIG. 27 provides an example of use of the client-config-
ured data acquisition scheme using the embedded variable
map. Here, Node A registers for an event on Node B using the
publicly know API X and Op CodeY that links to the desired
event variable. Next, Node C attempts to register for the same
event using API X and Op Code Y. Because the API and Op
Code pair have previously been registered by Node A, Node
C’s request is rejected. However, Node C then requests data
from the remote (embedded) variable map with the get
Remote Variable Data command. Node B responds with
information, including the desired variable’s memory
address. Node C then uses this memory address to register for
an event, but this time with a different API and Op Code pair.

FIG. 27 can also be thought of as disclosing two message
scenarios relating to the event creation suggested in F1G. 26B.
The first scenario describes the Messaging between Nodes A
and B both of which communicate via internal communica-
tion network 14 and which is compatible with software archi-
tecture 10. In the first scenario, Node B is able to comply with
the request from Node A. The second scenario describes the
Messaging between Nodes C and B both of which commu-
nicate via internal communication network 14 and are com-
patible with software architecture 10. In this scenario, Node B
cannot comply with the request from Node C because the API
Id and Op Code in message 3 has already been allocated by a
previous request. In this case, Node B responds appropriately
resulting in a query (5) from Node C resulting in a network
message (6) from Node B containing the necessary informa-
tion allowing Node C to recreate the same NVOEvent

10

15

20

25

30

35

40

45

55

60

74
memory structure of FIG. 33 with an API Id and OP Code
unique to the DynamicMemoryHeap of FIG. 33 of Node B’s
software architecture 10.

FIG. 28 illustrates the configurable event notification func-
tionality provided by this invention. Preferably, events would
only notify external clients when triggered by default. How-
ever, it may be desired that this external notification be
“muted” at some times without actually removing the event
from the DAQ engine 30. Additionally, it may be desired that
the internal application within the software architecture 10 be
notified when an event occurs. Thus, this invention provides
such functionality. As previously discussed, external notifi-
cation can be altered using the Set External Event On/Off
command within the DAQ API. Additionally, the software
architecture 10 preferably provides an internal function to
turn internal notification on and off. FIG. 28 shows examples
of event notifications under the possible configurations.

In this way, the invention has the ability to disable and
re-enable the realization of the NVOEvents of FIG. 33 onto
the internal communication network 14. In addition, the abil-
ity to disable and re-enable the realization of the NVOEvents
of FIG. 33 as internal messages sent to software component
16B within the same software operating environment 16 A of
the software architecture 10.

FIG. 29 illustrates the functionality of an acknowledged
event within this invention. In an acknowledged event, the
software architecture waits a pre-determined time for an
acknowledgement message from the client until processing
the next event. If the pre-determined time expires, a pre-
determined number of retries are executed. Preferably, all
events are assumed to be unacknowledged by default. Thus,
after sending an event to the client(s), the DAQ engine 30
immediately processes the next event. However, some appli-
cations require that events be acknowledged to insure that the
message was received by the event requester. Using this tech-
nique, the sender can resend the event if the acknowledgment
is not received. The acknowledgment confirms that the
requester has received the event. The advantage to the pre-
ferred embodiment of providing the option for acknowledged
events is that it is the requester who determines the necessity
of'the acknowledgement according to the application require-
ments. Therefore, when the requester creates the event using
the mechanisms provided by the software architecture 10
within the interface to the DAQ 30, information is included in
the message 28 A which provides a further classification of the
event as acknowledged or unacknowledged. As shown in the
example in FIG. 29, upon occurrence of an acknowledged
event the software architecture blocks all other event while
waiting for an acknowledgment from the client. If no
acknowledgement is received, the software architecture 10
will re-send the event after a configurable amount of time.
This retry sequence will occur a configurable amount of
times, until finally the software architecture stops attempting
to send the event and notifies the application through a call-
back function of failure.

FIG. 30 illustrates the security features provided within
this invention. Because the execution of critical functions by
external nodes is possible through the previously described
protocols, this invention provides a firewall mechanism to
restrict access to command execution. Commands that are
deemed safety critical can be listed in a table, preferably in the
file SAVariableMap .h, before compilation. Commands can be
listed specifically (with an APTand Op Code) or as entire APIs
(with an specific API and an Op Code=0xFF). The commands
listed in this table are claimed to be behind the firewall. As

US 9,124,444 B2

75

shown in FIG. 30, invention provides three levels of security
access: Access Denied, Access Granted, and Temporary
Access Granted.

Preferably, all nodes start with an access level of Access
Denied by default. In this access level, the node is only
allowed to execute the commands in front of the firewall.
Thus commands behind the firewall (or listed in the firewall
table) are not allowed to be executed. Upon successful sub-
mission of a permanent password (within the payload of the
Publish Node feedback message), a node is promoted to the
Access Granted security level. In this access level, the node is
allowed to execute all commands, in front of and behind the
firewall. For temporary access behind the firewall, a node can
successfully submit a temporary access password (within the
payload of the Publish Node feedback message). In this
access level, the node is given access to all commands, in
front of and behind the firewall, for a configurable amount of
time. After this time has expired, the node’s access level is
reverted to its previous state.

Specifically, FIG. 30 contemplates two passwords each
representing a security level recognized by the logic of the
command firewall. A password will be transmitted by a com-
ponent or client when the message of the DAQ API, publish
SA Node is broadcast. (see bytes 3 and 4 or Op Code 2). One
of the passwords represents permanent access to all special
commands that are considered to be behind the firewall. The
second password will grant temporary access to all special
commands that are considered to be behind the firewall. With-
out a password, clients will have access to all commands
which are considered to be in front of the firewall. The engi-
neer responsible for the installation of the software architec-
ture 10 onto a component 16 of the household appliance 12
will determine which commands are in front of and which
commands are behind the firewall of FIG. 30.

FIG. 31 illustrates an example of operation of the firewall
security provided by this invention and shown in FIG. 30. By
default, a node does not have access to commands behind the
firewall. Thus, as shown, if a node without access attempts to
execute a firewalled command, it will be rejected. After an
incorrect password submission, the firewalled command will
still be rejected. Only after a successful password submission
is the node allowed to execute the firewalled command.

FIG. 32 illustrates the standard public interfaces which the
software architecture 10 is able to implement. Shown is the
ApplicationSpecificAPI which is further populated with use-
ful functionality by the designer according to the needs of the
application. Also shown is an example of associations with
other software components of the software operating envi-
ronment with which the software architecture 10 would inter-
act.

FIG. 33 illustrates the preferred implementation of the
software architecture 10. Shown are the internal functions
and memory allocations needed to perform and support the
functionality implied by FIG. 32. Also shown are helper
classes (Command Handler, Dynamic Memory Heap, Update
Handler, NVOEvent, TimeHandler, WIDECommHandler,
MessageParser, and AppSpecificCommandHandler) which
show the functional grouping of the internal functions and
memory allocations needed. Also shown are the associations
between the helper classes.

FIG. 34 shows the preferred organization of source code
files of the software architecture 10.

FIG. 35 shows a collection of inter-related state diagrams
for three primary states (COMM_IDLE, COMM_EXPECT-
ING_ACK, and COMM_PENDING), with each state possi-
bly having a plurality of sub-states, and so on. The function-
ality represented here is related to the collaboration

10

15

20

25

30

35

40

45

50

55

60

65

76

associations shown in FIG. 33. Its invocation is also refer-
enced in FIG. 11 as one of the standard interface functions
invoked from the MAIN execution loop of the software oper-
ating system onto the software architecture 10.

The MAIN function of the software operating environment
abA (shown in FIG. 33 and in FIG. 11) invokes on SA_W-
ideComm() shown in the SA class definition (where SA and
its aggregate functionality is the Software Architecture 10).
The result of the function invocation, is shown in FIG. 35. As
shown in FIG. 11, MAIN invokes on SA_WideComm()
periodically within the software operating systems execution.

FIG. 35 shows a 2"“ indirect interaction with MAIN which
is a result of MAIN invoking on the WIDE function
WIDE_EXEC(). This collaboration is shown in FIG. 11 and
in FIG. 35. Inthis case, WIDE software operating layer within
the WIDE_EXEC() function invocation calls WIDE.Build-
Data() which in turn calls SA.WideCommHandler.
SA_BuildData() 52. In FIG. 35, this invocation is shown
within the COMM_PENDING state. This path of execution
occurs when, in the previous state of COMM_IDLE, the logic
within the sub-states of COMM_IDLE result in a pending
outbound message for the WIDE network 14. As shown in
FIG. 33, this state transition is realized by the invocation of
the function WIDE.QueueMessage(). This invocation,
results in the invocation of the logic contained within the
COMM_PENDING state of FIG. 35.

The COMM_EXPECTING_ACK state of FIG. 35 is a
result of an outbound event having been initially created with
a special indicator denoting acknowledgment required. If the
event (also referred to as update) which is being operated on
within the COMM_PENDING state requires acknowledg-
ment, the state transition from COMM_PENDING will be to
COMM_EXPECTING_ACK. In this case, the event will be
re-sent, by re-entering the COMM_PENDING state if a time
out has expired without receipt of the expected Acknowledg-
ment message. This process will be repeated until either an
Acknowledgement is received or until the configurable retry
parameter (MAX EVENT_RETRY which is incremented
each time the event is re-transmitted) is exceeded.

FIG. 36 shows a collection of inter-related UML state
diagrams. Shown are four primary states (READY, TRANS-
MIT SNAPSHOT, UPDATES_BLOCKED, and
PROCESS_DAQ_EVENTS). The functionality represented
here, is related to the collaboration associations shown in
FIG. 33. Its invocation is also referenced in FIG. 11 as one of
the standard interface functions invoked from the MAIN
execution loop of the software operating environment onto
the software architecture 10.

The purpose of the functionality represented by FIG. 36 is
to evaluate the structures (NVOEvent) 31 of FIG. 33 deter-
mining ifthe conditions for event transmission have occurred,
collecting those, and setting the appropriate flags (Up-
dates_Pending & Bounded Update) so that when the State
Machines of 35 are executing, events conditions detected by
the DAQ 30 are realized as WIDE Packets 24 onto the WIDE
bus 14.

FIG. 37 shows two primary states (MSG_READY and
MSG_PROCESS). The functionality represented here is
related to the collaboration associations shown in
FIG. 33 where WIDE calls SA.WideCommHandler.SA.Ac-
ceptData(). Invocation into these state machines are also
referenced in FIG. 11 as functions invoked from the MAIN
execution loop of the software operating system onto the
software architecture 10 where MAIN calls SA.SA_Process-
IncomingEvents(). These inter-related state machines govern
the execution of incoming commands, responses to requests,
and the handling of events.

US 9,124,444 B2

77

FIG. 38 shows the execution of an ordered collection of
messages of the classes in FIG. 33 of the software operating
environment. These messages represent the execution path
for a common set of logic referenced as ‘Send WIDE Mes-
sage’in FIGS. 39, 40, 41, and 42. The invocation from MAIN
and WIDE (via WIDE_EXEC()) are shown in FIG. 11.

FIG. 39 shows the execution of an ordered collection of
messages of the classes in FIG. 33 of the software operating
environment. These messages represent an interaction within
a software operating environment containing the software
architecture 10. The invocation from MAIN is shown in FIG.
11. The diagram illustrates the messaging required to add a
well formed NVOEvent memory structure to the Dynamic-
MemoryHeap.

FIG. 40 shows an ordered collection of messages of the
classes in FIG. 33 of the software operating environment.
These messages represent an interaction within a software
operating environment containing the software architecture
10. The diagram illustrates the message execution of FIG. 37.
And the invocation from MAIN is shown in FIG. 11. The
purpose of the functionality represented by the diagram is to
evaluate the NVOEvent memory structures contained within
the DynamicMemoryHeap, collect those and their appropri-
ate data values whose event triggering criteria have been met,
and to insure a realization of packets 24 onto the internal
communication network 14 for the purposes of notifying
other clients 16/22 of the NVOEvents which have met there
trigger criteria and the associated data values.

FIGS. 41, 42, and 43 show an ordered collection of mes-
sages of the classes in FIG. 33 of the software operating
environment for the purpose of processing incoming com-
mands (NVOs) from the Network 14. These messages repre-
sent an interaction within a software operating environment
containing the software architecture 10. The invocations from
MAIN and WIDE (via WIDE_EXEC()) are shown in FIG.
11. The figures, described individually in subsequent para-
graphs, represent 3 cases of alternate paths for execution.

FIG. 41 illustrates the messaging required to process
incoming messages from the internal communications net-
work 14 from clients 22/16 which do not require a response
[Command-NoReponse] containing meaningful data other
than a response transmitting the success or the reason for
failure of the incoming message (the ACK or NAK of API
1ID=1, Op Code=1).

FIG. 42 illustrates the messaging required to process
incoming messages from the WIDE bus 14 from clients 22/16
which require a plurality of response messages [Command-
MultipleResponseRequired] containing meaningful data in
addition to a response which transmits the success or the
reason for failure of the incoming message (the ACK or NAK
of API ID=1, Op Code=1).

FIG. 43 illustrates the messaging required to process
incoming messages from the internal communication net-
work 14 from clients 22/16 which require a single response
messages| Command-SingleResponseRequired] containing
meaningful data in addition to a response which transmits the
success or the reason for failure of the incoming message (the
ACK or NAK of API ID=1, Op Code=1).

Taxonomy Control

A typical prior art approach to using a new controlling
device to control an appliance is to have the software compo-
nent of the new controlling device duplicate the logic of the
appliance controller so that the new controlling device does
not inadvertently request the software component of the
appliance controller to perform an operation of which it is
incapable. This prior art approach further requires communi-
cations between the appliance and the new controlling device

20

35

40

45

78

regarding the current state of the appliance. This prior art
approach is inefficient since it requires a lot of overhead on
the new controlling device and takes time to be loaded on to
the new controlling device and translated into a form under-
standable by the new controlling device. Furthermore, this
prior art approach requires that a variant of the software
component for the appliance controller must be constructed
for each new appliance and each time the appliance gets a new
or altered functionality.

The purpose of a control taxonomy is to avoid requiring
this duplication of software logic (often called business logic)
between two interacting software components in a control-
ling device and a controlled appliance. In particular this per-
mits a command generator in a controlling device to readily
control an appliance without any information about the appli-
ance being controlled except the control taxonomy itself. This
can increase the flexibility of introducing “generic” control
devices to control new appliances, adapting control devices to
newly available cycles or functionalities which have been
added to an appliance, and switching appliances between
modes of operation where different operating cycles or func-
tionalities are available. It also makes control of appliances
easier for users since they need only be presented with
choices which are currently available from the appliance.

The present invention uses a structured taxonomy dataset
to efficiently communicate to the controlling device just that
information which the controlling device needs in order to
generate a well formed command for the appliance. As used
herein, a well formed command is a command which has
meaning and is performable by the appliance. The informa-
tion conveyed by the dataset includes a hierarchy of options
and data inputs required to form the well formed command. In
the preferred embodiment, it also includes semantic or con-
textual information to communicate in word or iconic form
the available options so that a user can understand the avail-
able choices and enter the appropriate data. This is preferably
accomplished by labels within the dataset that are associated
with arbitrary or non-user friendly identification elements.
This allows the logic of the software componentry which
must interpret and process the Taxonomy to be decoupled
from the presentation of the Taxonomy on a user interface.
(ex. Foreign language, Labels, Units).

Referring to the FIG. 44, generally, illustrating the
improved control structure and method of the present inven-
tion, the appliance 12 being controlled has a software com-
ponent 2 16B having a appliance controller and status gen-
erator. The controlling device 16, 22 used to control the
appliance has a software component 116B with a command
generator, a selection builder and a status interpreter. The
controlling device 16, 22 may be a programmable user inter-
face such as a pda, web tablet, a cell phone, an LCD attached
to the appliance or a client device.

The taxonomy architecture, shown disposed in the appli-
ance controller 16 and logic, may alternatively be disposed in
a remote location, such as in a controlling device or on the
internet. The taxonomy architecture includes a taxonomy
generator, a taxonomy engine, a taxonomy translator and a
taxonomy structure. The taxonomy architecture generates a
taxonomy dataset defining taxonomy capabilities facilitating
the creation, by the software component 1, of well formed
commands that can be executed by software component 2.
Each of these components and their interrelationships are
described in greater detail below.

Creation of the Taxonomy Dataset

The taxonomy dataset is derived from the operational capa-
bilities ofthe appliance controller 16 structured in a manner to
allow the command generator in the software component 1 to

US 9,124,444 B2

79

interpret the dataset to accomplish several results. More par-
ticularly, from time to time the taxonomy engine uses the
taxonomy structure and the state aware information to gen-
erate a taxonomy dataset reflective of the subset of the uni-
verse of options for commands that would be available from
an appliance to those that are currently available from the
appliance.

For example, the taxonomy dataset describes the available
functions supported by a software component 16B, each
functions argument, and the valid values of each argument in
a data structure. In addition, taxonomy dataset defines the
valid values of feedback variables. Since this in a data struc-
ture, it can be transmitted and re-transmitted to clients 16 or
22 as required. Changes to taxonomy dataset occur as the
cycles of operation progress and the available commands or
the valid values of their arguments change. Moreover, addi-
tional commands may become available or may become
invalid as the cycle of operation progresses from Idle (see
FIG. 7).

More particularly, the selection builder registers with the
Taxonomy Manager to receive notifications for new Tax-
onomy Engines. In response, the Taxonomy Manager passes
references to all known Taxonomy Engines back to the selec-
tion builder. The selection builder then requests from each
Taxonomy Engine a Taxonomy Capabilities Data Set. The
Taxonomy Engine evaluates a Taxonomy Structure com-
prised by the Controller Logic of Software Component 2 or
alternatively a Document to generate a Taxonomy Capabili-
ties Dataset. The selection builder then populates a set of
psuedo command structures appropriate for an Application
End Point (Examples of Application End Points are user
interfaces for control or service or other intermediate appli-
cation layers like an energy controller or home automation
mode like vacation or goodnight.) and passes those structures
to the Application End Point allowing the Application End
Point to be configured. Alternatively, the selection builder
may directly configure the application end point.
Communication and Use of the Dataset.

When a controlling device is networked with the appliance,
the taxonomy manager establishes a relationship between the
software component 1 and the taxonomy architecture allow-
ing the command generator to query for the existence of
taxonomy datasets, providing the software architecture 1
access to a taxonomy dataset, and allowing the command
generator and status interpreter to subscribe to taxonomy
dataset updates. The Taxonomy Translator is an optional
component that translates the Taxonomy datasets between
Software Components 1 and 2.

The taxonomy dataset is communicated to the controller of
software component 2 and to the selection builder of software
component 1. Optionally, the taxonomy translator translates
the taxonomy dataset to a different schematic definition of the
command generator.

The command generator uses the taxonomy dataset to con-
struct and populate a set commands structures available for
selection by a user interface or other client applications com-
prising a set of valid commands, their valid arguments, and
each arguments valid values. More particularly, the command
generator uses the taxonomy dataset to construct one or more
well formed commands which can then be transmitted to the
controller. Since the taxonomy dataset can be reset and sent at
different times by the taxonomy engine, or the dataset can be
updated by revisions from the taxonomy engine, the com-
mand generator can have a current set of command structures
then available for selection by a user interface or other client
application.

10

15

20

25

30

35

40

45

50

55

60

65

80

Thus, in essence, through use of the Taxonomy architec-
ture, the software component 2 or its proxy (the taxonomy
translator) communicates to software component 1 a rule set
that can be interpreted by software component 1 so that soft-
ware component 1 does not request something of software
component 2 which software component 2 cannot accommo-
date and does not operate on a state variable which is set to an
invalid value.

Before the Application End Point is able to commence
execution, it will request or register for status updates with a
Status Interpreter. This will allow the Application End Point
to be populated with valid state variables from the controller
before logic is executed and before user interface componen-
try is rendered. The Status Interpreter will process Taxonomi-
cally correct status datasets and validate those datasets
against the Taxonomy Capabilities Data Set. The Status Inter-
preter request or register for status updates from the Status
Generator of Software Component 2 via the Taxonomy
Engine. Upon receipt of a Taxonomically correct status, the
Status Interpreter will provide new status values to the Appli-
cation end point.

The Application End Point executes resulting in a render-
ing of the current status of software component 2 and a
rendering of selectable psuedo command structures. Each
time a selection is made from the psuedo command structure,
the selection builder populates a set of valid sub-commands
appropriate for the selection for further selection by the appli-
cation end point. When a complete selection is made, a struc-
ture containing all psuedo commands are passed to the com-
mand generator.

The command generator will construct a Taxonomically
correct well formed command and optionally via the Tax-
onomy Translator, invoke the command onto the Controller
of Software Component 2 via the Taxonomy Engine.
Execution

The well formed command is delivered to the controller of
the appliance and executed by the appliance.

Typically, the command will result in a state change to the
associated memory of Software Component 2 which will
trigger a status update created by the Status Generator and
resulting in new renderings of state to the Application end
point. This change in state will result in a new Capabilities
Taxonomy or a partial Capabilities Taxonomy which can
replace portions of the original Capabilities Taxonomy. The
new Capabilities Taxonomy resulting in a different set of
valid selections for controlling the cycles of operation of
Software Component 2.

Validation

The status interpreter uses the taxonomy dataset to validate
status updates from the controller or taxonomy translator. The
dataset contains information structured in such a way to allow
the controller to fully validate incoming commands accord-
ing the structure without additional logic outside of the
dataset. For example, the dataset can be conceptually thought
of as one or multiple decision trees, with each level of the
taxonomy forming a different decision branch, with each of
the options and/or data inputs can form a different level. The
key presses on the user interface required to select the options
and/or data inputs in forming the well formed command can
be compared against the decision tree to confirm that each key
press is found within a common branch on the decision tree.
Ifthe key presses are not found, then itis an indication that the
command contains an error. The taxonomy structure thus
serves to populate the user interface with available options
and data inputs for a given state of the appliance and also
serve as the logic for validating the resulting command.

US 9,124,444 B2

81

The taxonomy dataset can be thought of as all available
options and settings for an appliance at the current state. For
example, the appliance comprises multiple components inter-
connected by the internal network. Each of the components
can have one or more devices. Each of the devices has one or
more functionalities, which has one or more settings. All of
the functionalities for all of the devices will not necessarily be
available during each state of the appliance. As such, the
taxonomy dataset will comprise all options and data inputs
for all devices that are currently available.

FIGS. 45-48 illustrate one example of the Taxonomy con-
trol in the context of a user interface 16, 22 for a microwave

10

82
command has passed through the validation process. The
controller and logic of Software Component 2 then uses the
well formed command to control the operation of the devices
to effect the well formed command.

A detailed example of the creation of the taxonomy dataset
and the well formed command should prove useful. The cre-
ation of the taxonomy dataset for the microwave of FIG. 45
that discloses multiple cooking cycles was constructed by the
selection builder from the taxonomy capabilities dataset as is
illustrated in XML as follows:

<device id="microwave" label="Microwave Oven'>
<device id="ovenCavity" label="Microwave Oven'>
<char name="cycle" label="Cycle" default="timedCook'>
<setting name="timedCook" label="COOK" />

<char name="turntable" label="Turntable" default="on">
<setting name="on" label="ON" />
<setting name="off" label="OFF" />
</char>
<range name="duration" label="Duration" default="30" units="seconds"
max="6039" min="60" inc="1" />
<range name="power" label="Power Level" default="100" units="%"
max="100" min="50" inc="10" />

</setting>
<setting name="jetdefrost” label="Jet Defrost”/>

<char name =foodType label ="Food Type”/>
<setting name="poultry"” label="POULTRY" />
<setting name="meat" label="MEAT" />
<setting name="fish" label="FISH" />

<f/char>

</setting>

</char>
</device>
</device>

|
|
|
etc

that is populated with a taxonomy dataset indicating the avail-
able functions of the appliance 12 for the current state. The
user can select from the parameters of the dataset to form the
well formed command that will be issued to control the opera-
tion of the appliance 12.

FIG. 45 illustrates the available hierarchy of options and
data inputs. The top level of the hierarchy begins with the
cycle 100, which is shown to have the options of COOK, JET
DEFROST, BAKED POTATO, STEAM COOK, AUTO
REHEAT, AND DINNER PLATE, as illustrative examples.
The user must select one of the options from the top level.

Once the user selects an option from the top level, the next
level of the hierarchy is exposed to the user based on the top
level selection. In FIG. 46, the user has selected the COOK
option and the user interface then displays data inputs, in the
form of TIME 102 and POWER LEVEL 104, available for
that option and necessary to form the well formed command.

FIG. 47 illustrates the situation were the selection of a top
level option exposes options at a sub-level. In FIG. 47, the
JET DEFROST is selected, which exposes the sub-level of
types of meat 106. The user must select the appropriate meat
option in completing the well formed command. Data inputs
in the form of weight 108 and defrost level 110 are exposed
and must be selected to complete the well formed command.

Once the user has selected the options and data inputs from
the taxonomy dataset accessed by the user interface, the com-
mand generator will form the well formed command and send
it to Software Component 2 on component of the appliance
for implementation. This is done only after the well formed

40

45

Ifthe user of the microwave of FIG. 45 chooses to Cook for
30 seconds at 90% power with the Turntable On, a well
formed command of the Taxonomic schema would be trans-
mitted optionally to the Taxonomy Translator and to the Tax-
onomy. The command of the form:

<command id=" microwave >
<device id=“ovenCavity”>
<sequence>
<step id="21">
<char name="cycle” setting="bake”/>
<char name="power” setting="90"/>
<char name="duration” setting="30"/>
<char name="turntable” setting="on"/>
</step>
</sequence>
</device>
</command>

The Taxonomy Engine would then traverse the Taxonomy
Structure to transform the well formed command of the Taxo-
nomic schema to a well formed command of the Controller of
Software Component 2 of the packet structure 28. The Tax-
onomy Structure is a superset of the Taxonomy Capabilities
Dataset. For each specifiable command element above (ie.
Cycle, Power, Duration, and Turntable) an additional collec-
tion of key words and values necessary to form Payload 28A
would be associated within the Taxonomy Structure. These
key words would include AP 1d, Op Code, and Position Index
into the Payload 28A where Position Index could be a byte
offset or a bit offset.

US 9,124,444 B2

83

The Taxonomy Dataset could be constructed to directly
represent the universe of possible commands of the APIs of
software architecture 10 providing useful functionality for a
service, factory, or laboratory engineer or technician.

Referring again to FIG. 44, it will be understood that the
structure illustrated in FIG. 44 is more conceptual than physi-
cal. FIGS. 48 and 49 show embodiments of the taxonomy
architecture of FIG. 44, partitioned according to the physical
architecture of an appliance or an appliance network as
shown, for example, in FIG. 1.

The software component 1 (16B in FIG. 44) is represented
as being within a remote client 22, such as a remote controller
with a User Interface. Consequently, the sub-components of
Software Component 1 (the selection builder, the command
generator, and the status interpreter) are specialized for this
User Interface application. FIG. 48 shows software compo-
nent 1 in such a user interface device, identified here as a
“thick client.” A thick client would have the ability to parse a
data structure such as an XML document, interpret its mean-
ing, and implement the ‘Selection Builder’ functionality.
Software component 2 and the Taxonomy Architecture reside
in the appliance 12.

FIG. 49 depicts a second embodiment of the Taxonomy
control architecture where all components are included
within an appliance 12. In the structure of FIG. 49 the Tax-
onomy Architecture uses a Taxonomy Translator (not neces-
sary in the embodiment of FIG. 48), thereby rendering the
Status Interpreter of Software Component 1 to the reduced
functionality of an Input Handler. The UI board in this case
comprises an “a” side and a “b” side, each with is own pro-
cessor. Both sides are connected to each other, preferably by
a serial communication “c”. The Ul board is connected by
another connection 14 to a CCU with software component 2,
where the connection 14 can be the same type as connection
“c”, or it can be different. The “a” side is preferably an LCD
controller that exposes a low level API, and lacks the full
capabilities of a thick client. Hence, the “a” side can be
referred to as a “thin client” The “b” side comprises the
Taxonomy Architecture and Software Component 1.

FIG. 50 is a more generalized block diagram of the archi-
tecture of FIG. 44 with elements rearranged for clarity and to
show a less specialized configuration. IN FIG. 50a, it can be
seen that The Taxonomy Engine comprises a Taxonomy Con-
troller, a Model, and a collection of Operators. The Taxonomy
Controller is aware of the State of the Componentry for which
it is controlling, and is responsible to retrieve from the Tax-
onomy Structure the State Appropriate Taxonomy Model and
inform the Taxonomy Engine of the Change. This action
provides an event to the appropriate Taxonomy Operator to
examine the new Taxonomy Model and generate a new Tax-
onomy Capabilities Data Set. The Taxonomy Engine then
publishes the new Capabilities to the Taxonomy Manager,
who then distributes the new information to the appropriate
Translators or other Software Components that have regis-
tered for notification.

It will be apparent from FIG. 50 that the Selection Builder,
the Status Interpreter, and the Command Generator found in
the Software component 1 of FIG. 44 is now in the Taxonomy
Translator. Taxonomy Translator 2 comprises the Selection
Builder and is responsible for the conversion of Taxonomy
Datasets to Software Component Specific interfaces. There-
fore, in this example the Software Components are not com-
prised with the functionality of Interpretation or Generation
of Taxonomy Datasets. Rather, they are comprised with han-
dling inputs from the Translator and sending outputs to the
Translator.

10

20

25

40

45

50

84

It is contemplated that a Taxonomy Architecture, through
the use of multiple translators, can simultaneously connect to
Software Components similar to Software Component 1 of
FIG. 44 and Software Component 2 of FIG. 50.

Looking now at FIG. 51, it is generally known that complex
data structures have tremendous advantages because they can
be easily varied and re-used with a single complied source
code. But this complexity can be troublesome to understand,
create, troubleshoot, debug, explain, and generally manage.
Object Oriented Languages provide some level of hiding
complexity relative to non-object oriented languages such as
C. Similarly, XML data structures are human-readable, in
contrast to byte arrays, and therefore can eliminate complex-
ity. But it is currently cost prohibitive to implement technol-
ogy such as XML or Java in most appliances for domestic use.
The invention offers a visual configuration utility that simpli-
fies handling complex data structures at much less cost than
known systems.

Following the flow of FIG. 51, a designer in step 1 starts the
visual configuration utility. A designer can be someone who
does the role of product or feature planning, user experience,
or user interface design, engineering, or anyone else with a
need to retrieve value from or provide value to the information
contained by an instance of a configuration held within the
memory of the visual configuration utility. In step 2, the
designer uses the configuration utility. In this step, the design
will load a configuration file from a persistent store such as a
hard drive or database or web site. Alternatively, it may be
checked out from a document version control system such as
visual source save.

In step 3, the designer creates a new configuration com-
prising a taxonomy structure or begins editing an existing
configuration comprising a taxonomy structure. The editing
process includes steps like adding new taxonomy elements,
deleting taxonomy elements, moving taxonomy elements, or
modifying the properties of a taxonomy element. Other sub-
steps of step 3 may include binding taxonomy elements to
message identifiers or functional identifiers of arbitrary soft-
ware components of which taxonomy elements either relate
to or represent. In step 4, the designer will save the taxonomy
configuration appropriately and notify the appropriate office
mates such that if one of the office mates is the appropriate
controls development engineer, he may immediately acquire
the saved taxonomy configuration file and begin step 5. In
step 5, an appliance controls development engineer will gen-
erate a software and software data file appropriately config-
ured such that a compiler can be invoked preferably from the
Visual Configuration Utility to create a downloadable image
appropriate for execution by a processor. Further, the controls
development engineer will combine the generated software
and software data file with a plurality of other arbitrary soft-
ware components. Preferably, the Visual Configuration Util-
ity can accomplish this task. In step 6, the appliance controls
development engineer will invoke the compiler on the com-
bined file and the compiler will generate a downloadable
image. And in step 7, the appliance controls development
engineer will download the downloadable image to the
embedded appliance control processor and test the result. At
any step in the process, the process actor may stop activities
and move another step taking appropriate action to mitigate
the incomplete step and/or the potential re-ordering of steps.

FIGS. 52 and 53 depict an application built using a propri-
etary application framework. The Taxonomy Visual Configu-
rator of FIG. 52 would be used as a rule set to develop
Taxonomy Structures. Once the Taxonomy Structure is con-
figured visually, it can be transformed and exported into a
functionally equivalent complex embedded data structure.

US 9,124,444 B2

85

(See step 3 of FIG. 51) Note how the Taxonomy Structure
comprises multiple Taxonomy Structures, each associated
with a unique appliance state. Examples of Unique Appliance
States are found in FIG. 7.

Looking more closely at the example of FIG. 52, it can be
seen that there is no Wash Phase definition. This is because
Wash Phase is not a valid feedback until the Appliance is in
Running State. In FIG. 53, there is no Cycle definition. This is
because during Running, the Cycle Definition cannot be
changed.

The data structure of FIGS. 52 and 53 is very powerful and
is the heart of the Taxonomy Architecture. It consists of a
nested tree of elements where each element of the tree has a
type where that type dictates to the Taxonomy Operators of
FIG. 50 how to properly traverse and extract information
from the Tree. Attributes should have corresponding Active
Values which are one of the child Values of the plurality of
child Values. Attributes contain a plurality of child Values
which represent the valid selections of the Attribute. A Value
which contains a plurality of Attributes is a Value which must
be further specified by having each contained Attribute be
defined by its contained active or selected Value. When a child
Value is selected or active, the Taxonomy Operator looks to
see if the child Value contains children of the Attribute Type.
If so, the Taxonomy Operator continues the tree traversal
repeating the function of the Taxonomy Operator on the next
level of the tree. Ranges are children of Attributes and are
equivalent to a plurality of Values which can be mathemati-
cally derived from the values of Min, Max, and Inc.

The information contained in the data structures of FIGS.
52 and 53 is therefore more useful than one would at first
realize. For example, Taxonomy Operators can be written to
do a variety of useful functions across a number of the ele-
ments of the taxonomy architecture, especially when there is
a graphical user interface or an external client. A first Tax-
onomy Operator could use the data structure to determine
what content should appear on a user interface. As a user
makes selections on the user interface, the first Taxonomy
Operator could re-examine the current active selections of the
user and repopulate the user interface with the new valid user
selections and the valid options of each. A second Taxonomy
Operator could be informed of changes to the appliance state.
Upon change to the state of an appliance, the second Tax-
onomy Operator could retrieve a new Taxonomy Capabilities
Dataset so that the user interface could be repopulated based
on the new valid selections and or new valid operators for
each. A third Taxonomy Operator can be configured to
receive Taxonomically Correct Inputs and check to see that
the Input corresponds to a valid well-formed command. The
third Taxonomy Operator would accomplish this by walking
the Taxonomy Structure in the Taxonomy Architecture of
FIG. 50. The third Taxonomy Operator would evaluate all of
the potential roots of the Taxonomy Structure and find a
corresponding root identifier in the Taxonomically Correct
Input structure. From the root, the third Taxonomy Operator
would begin to recurse down the tree, determining which
branches of the tree to continue down by finding a corre-
sponding identifier in the Taxonomically Correct Input struc-
ture. When the third Taxonomy Operator reaches the end of
the tree or alternatively exhausts the elements in the Taxo-
nomically Correct Input structure having used all of them at
least once, a valid Taxonomically Correct Input structure is
determined if both there are no other un-accounted for ele-
ments in the Taxonomically Correct Input structure, and there
are no child elements remaining un-walked in the Taxonomy
Data Structure. This third operation is the equivalent of por-
table state-based business logic enabling the thin client 22 of

10

20

30

40

45

86

FIG. 48 to be completely devoid of any logic associated with
the operation of the appliance. The benefit of this is that user
interfaces and all external clients with proper communication
and Taxonomy Dataset Interpretation Operators can be devel-
oped with only knowledge of how to interoperate with Tax-
onomy Datasets, and therefore can be devoid of all knowl-
edge of the connected device with which it is in operable
communication.

While the invention has been specifically described in con-
nection with certain specific embodiments thereof, it is to be
understood that this is by way of illustration and not of limi-
tation, and the scope of the appended claims should be con-
strued as broadly as the prior art will permit.

What is claimed is:

1. A method of facilitating servicing an appliance, config-
ured to perform a cycle of operation on a physical article, and
having a processor with control logic in communication with
at least one observable component in the appliance to effect
the cycle of operation by way of a first software operating
layer in a first operating state and an alternate logic for com-
munication with the at least one observable component in the
appliance by way of a second software operating layer in a
second operating state, comprising:

establishing two way communication between the at least

one observable component in the appliance and a remote
client via the alternate logic, wherein the control logic of
the first software operating layer is rendered ineffective
unless invoked by way of the second software operating
layer,

selecting on the remote client a diagnostic test having at

least one command message and expected results,
transmitting the at least one command message from the
remote client to the appliance,

executing the at least one command message by way of the

second software operating layer in the second operating
state either by way of the control logic of the first soft-
ware operating layer if invoked by the by way of the
second software operating layer or by way of the alter-
nate logic of the second software operating layer and
directly commanding the at least one observable com-
ponent in the second operating state independently of
the first software operating layer,

observing on the remote client any state change in the at

least one observable component based on the execution
of the at least one command message, and

comparing the expected results to the observation.

2. The method of claim 1 wherein the observing step
includes receiving a message from the appliance in response
to the transmitting step.

3. The method of claim 1 further comprising receiving an
acknowledgment of the transmitting step.

4. The method of claim 1 wherein the state change in the
observable component comprises one of a development state,
an error detection cycle, or a diagnostic cycle.

5. The method of claim 4 further comprising sending cre-
dentials from the remote client and receiving authentication
of the credentials prior to the enabling step.

6. The method of claim 1 further comprising the step of
monitoring or receiving operational data associated with the
appliance.

7. The method of claim 6 further comprising analyzing the
operational data to diagnose a failure in the at least one
observable component, and communicating a response to a
user.

8. The method of claim 1 wherein the selecting step
includes establishing an identifier for the at least one com-
mand message.

US 9,124,444 B2

87

9. The method of claim 8 wherein the identifier has a first
value different from the value of any other identifiers of other
command messages wherein the control program uses the
first value to selectively effect at least one of aselection of
observable components for control by the control program
and the state.

10. The method of claim 8 wherein the identifier has a value
corresponding to a functionality communicatively available
via the two way communication.

11. The method of claim 10 wherein the functionality com-
prises at least one of a function call, the arguments thereof, or
the data type of each argument and wherein the control pro-
gram uses the value of the identifier to select the functionality
for execution use when the command message is received via
the two way communication.

12. The method of claim 11 wherein the command message
comprises at least one second identifier which, combined
with the identifier, uniquely identifies the functionality from
a plurality of functionalities available wherein the appliance
uses the value of the identifier and the value of the at least one
second identifier to select a unique functionality from the
plurality of functionalities for execution use when the com-
mand message is received via the two way communication.

13. The method of claim 1 further comprising the step of
using at least one discovery message to determine the avail-
ability of the at least one command message.

5

10

15

20

25

88

14. The method of claim 1 further comprising the step of
using at least one discovery message to determine the model
number of the appliance.

15. The method of claim 1 further comprising obtaining
diagnostic data from the appliance and using the diagnostic
data in the selecting step whereby the diagnostic test is
selected based on the diagnostic data.

16. The method of claim 15 wherein the diagnostic data
comprises at least one of appliance model number and at least
one identifier that identifies a functionality available via the
two way communication.

17. The method of claim 16 wherein the functionality com-
prises at least one of a function call, the arguments thereof, or
the data type of each argument.

18. The method of claim 1 further comprising receiving a
feedback message from the appliance after the transmitting
step whereby the actual state is observed by the remote client
by looking into the feedback message.

19. The method of claim 18 further comprising a parsing
step whereby at least the actual state is parsed from the feed-
back message for use in the comparing step.

20. The method of claim 1 further comprising configuring
amessage to create an event structure in a memory heap inthe
appliance.

21. The method of claim 20 further comprising classifying
the event structure as acknowledged or unacknowledged.

#* #* #* #* #*

